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1 Introduction

The lack of a theory of perception has led computer scientists to try to solve more modest problems. Pattern
classification is one such subfield of computer science which deals with the assignment of a physical object or
event to one or more categories [3]. Let us for now call this assignment (or function) f that takes as input a
physical object or event and assigns it to a specified category. To simplify our discussion, let the output be
binary and the input be R?. We take the domain of the function f to be R? because pattern classification
usually involves a data reduction step that extracts the properties or features of the input data and embeds
this data in some space. Statistical learning theory [4] shows that it is important to pick f from a class of
functions that has small VC-dimension.

VC-Dimension is also a central concept for the study of Probably(The probability of the bound failing
is small) Approximately Correct Model (when the bound holds the classifier f has low error rate), one of
the most general models used in computational learning theory. The idea of VC dimension is central in very
popular machine learning methods like Support Vector Machines and Boosting [4]. It also helps us answer
questions like “How many random samples does a learning procedure need to draw before it has sufficient
information to learn an unknown target concept?”

Here is an example to show the power of random sampling and VC dimension. Lets say we want to
estimate the number of people who live within 10 miles of a hospital in a given country. We can do this by
sampling and scaling up the results. What’s amazing is that the same sample size works for both Japan and
India! The magic lies in the concept of VC-Dimensions [2].

2 VC-Dimension

In order to understand how VC-Dimensions work, we start with a few definitions. Here we will use |S| to
denote the cardinality of any set S.

Definition 1 A Hypergraph is a pair H = (V,.S) where V is a finite set whose elements are called vertices
and S is a family of subsets of V', called edges.

Definition 2 A Range Space is a pair R = (X, R) where X is any finite or infinite set whose elements
are called points and R is a family of subsets of X, called ranges.

Definition 3 A set A is said to be Shattered by a range space R = (X, R) if A C X, and all 214! subsets
of A can be obtained by intersecting A with members of R.

Definition 4 The Vapnik-Chervonenkis (VC) Dimension of a Range Space (X, R) is the cardinality
d of the largest set A C X that can be shattered.

Now lets take a look at an example of how we might calculate the VC-Dimension.

Example 5 VC Dimension of Closed Half-Spaces in R?



Let H = (X,R) where X = R? and R = {ha p : A, B € (—00,+00)} where ha p = {z : Ax+By+1> 0}
(Simply put, X is a plane and R is the set of all half-spaces of X.)

What is the largest number of points that we can have in A so that we can shatter it?

e What if we have 3 pts in A?

— As we can see from Figure 1, all 8 subsets of the three points are intersected by X. Therefore this
set of three points is shattered.

e What if we have 4 pts?

— No, as we can see from Figure 2, we can take two points which are at a diagonal and we would
not be able to intersect just those two points without intersecting a third point.

In this example of closed half-spaces, the VC-Dimension = 3.
If we were to change X = R? to X = R?, the VC- Dimension = d + 1.
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Figure 1: Figure 1: All Subsets are intersected when |X| =3
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Figure 2: Unable to intersect only the diagonal solid points

Example 6 VC Dimension of All Convex Sets of a Plane

A set S in n-dimensional space is called a convex set if the line segment joining any pair of points of §
lies entirely in S.

Let H = (X,R) where X = R? and R = {All Convex Sets of the plane}.
We will choose our A so that our points lie on the unit circle centered at the origin.

Claim: The VC-Dimension = oo for this example.
Argument (not so mathematical): Take a subset of 3 points on the circle from A.

e If we want to intersect 1 point, we can do so by drawing a point. (Figure 3-1)
e If we want to intersect 2 points, we can draw a line. (Figure 3-2)
e If we want to intersect 3 points, we can draw a triangle. (Figure 3-3)

e What if we want to intersect n points? We can just join them in a convex polygon with n vertices(Figure
4)!

Therefore the VC-Dimension = oco.
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Figure 3: Convex Polygon intersecting 1, 2 and 3 points in unit circle centered at the origin.

Here are some sample exercises about VC-Dimensions. The solutions are placed at the end of the notes.

Exercise 1 - What is the VC-Dimension of axis aligned rectangles in the plane?
Exercise 2 - What about convex polygons in the plane with d sides?



Figure 4: Convex Polygon intersecting n points

2.1 &-Net
Definition 7 Let (X, R) be a range space with X finite, and let € € [0,1]. A set N C X s called an e-Net
for the range space (X, R) if NNS # 0 for all S € R with |S| > ¢| X]|.

Comment : If u is a probability measure on X, then N C X is an e-net with respect to pif NNS #0V S € R
with u(S) > e (u(X) =1).

2.2 Simpler Sampling Lemma

Lemma 8 Let W C X be chosen randomly such that |W| > e|X|. A set of O(XIn3) points sampled

independently and uniformly at random from X intersects W with probability at least 1 — 9.

Proof: Any particular sample z is in W with probability at least €, and not in W with probability at most
1 — e. Therefore the probability that all our samples do not intersect with W is at most J.

Prob(z e W) > ¢
Prob(x ¢ W) < (1—¢)
1.1
Prob (x ¢ W for all z In 5 samples> < (1- E)g In 1
< e In 5
Inéd

|
The |W| depends on | X|, but sampling depends only on ¢ !

Problem: This Lemma only applies for a given random sample W of X, not for all large random samples. . .

3 &-Net Theorem

The e-Net Theorem states the following:

Theorem 9 Let VC-Dimension of (X,R) be d > 2 and 0 < ¢ < L. 3 e-net for (X,R) of size at most
O(4Inl).



A Dbetter version of the e-Net theorem follows:

Theorem 10 If we choose O(g logg + %log%) points at random from X, then the resulting set N is an
e-net with probability > §.

Interested readers should look up the proof in Alon and Spencer [1].

3.1 Constructing N in this Case:

Pick ¢ lné random samples and put them in N. The theorem says that N is an e-net with probability at
least 5!!
2

Comment : See references for proofs.

4 Applications

As an example of a possible application, let us design a data structure using this algorithm!
Let the set of points P = {p1, p2, p3, ...pn } Where p; € R%.

We want to query our structure with any ¢ € R? if ||z —¢|| >r V p; € P.

If not, the algorithm should produce p; € P such that ||p; — || < r.

Otherwise with high probability ||z — ¢|| > r for at least 1 — ¢ fraction of the points.

We will try to convert the problem into a VC-Dimension problem by converting the spheres of R¢ into
half spaces in R%*!. Consider the set system

(P, Spheres in R?) = (Lifted(P), Half Spaces in R**1)
We know the VC-Dimension of this to be d + 2 from our first example!

So by our e-net theorem we will pick |[N| = O(g logg + %log %) points. If it fails for some x, we have a
witness. Otherwise F' = {z € P| ||z —¢|| < r} i.e. the set where our condition fails to hold. Since N is with
high probability a e-net, we can conclude with high probability that

5 Solutions to Practice Excercises

Exercise 1 - What is the VC-Dimension of axis aligned rectangles in the plane?
Solution - 4

Exercise 2 - What about convex polygons in the plane with d sides?
Solution - 2d + 1
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