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Simply put, if we know the form of fX(x; �) and have a sample from fX(x; �),
not necessarily random, the ml estimator of �, �ml, is that � which maximizes

fX1;X2;:::;Xn(x1; x2; :::; xn; �)

Where fX1;X2;:::;Xn(x1; x2; :::; xn; �) is the joint density function of the sam-
ple, written as a function of �.

In this context, we call the joint density function of the realized sample,
written as a function of �, the likelihood function.1 That is

L(x1; x2; :::; xn; �) = fX1;X2;:::;Xn
(x1; x2; :::; xn; �)

�ml is called the maximum likelihood estimate of � because it is that estimate
of � that maximizes the likelihood of drawing the given sample, x1; x2; :::; xn.

Maximum likelihood estimation is the most common estimation technique
in econometrics

We �nd �ml by maximizing L(x1; x2; :::; xn; �) with respect to �.

Maximum likelihood estimation is probably the most versatile tool in the
econometrician�s tool box.

Note that one needs to assume a form for fX(x; �) to get the ml estimator.2

Note that maximum likelihood estimation does not require that one�s sample
is a random sample, only that one can write down the likelihood function for
the sample in question.

1The sample is considered given, and the liklihood function identi�es the likelihood of
drawing that sample as a function of the parameter values.

2Actually this is a lie, but only rarely a lie.
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Given the likelihood function and collected data, there are numerous ways
to �nd maximum likelihood estimates:

� One can do it the old-fashioned way: take partial derivatives of L with
respect to each element in �, set all of them equal to zero, solve the system
for the �, and then check second-order conditions for a maximum.

� Let Mathematica, or some other such program, �nd those values of � that
maximum the likelihood function. These programs use search algorithms
to �nd the parameters that maximize the function. In Mathematica use
the command Min. Turn it into a maximization command by having it
minimize �L.
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1.1 Look what happens when the sample is a random sam-
ple

If the sample is a random sample from fX(x; �) then

L(x1; x2; :::; xn; �) = fX1;X2;:::;Xn
(x1; x2; :::; xn; �)

= fX(x1; �)fX(x2; �):::fX(xn; �) =
nY
i=1

fX(xi; �)

because each observation is an independent draw from fX(x; �).3

That is, �ml is that � which maximizes
Qn
i=1 fX(xi; �).

Further note that the � which maximizes
Qn
i=1 fX(xi; �) is also the � that

maximizes ln[
Qn
i=1 fX(xi; �)]; that is, the � that maximizes lnL is �ml.

And

lnL(x1; x2; :::; xn; �) = ln[
nY
i=1

fX(xi; �)]

=

nX
i=1

ln [fX(xi; �)]]

3 If x1; x2; :::; xn is not a random sample, and if one has su¢ cient information about
its non-randomness (a big assumption) one can determine fX1;X2;:::;Xn (x1; x2; :::; xn; �). For
example imagine that one sample graduate students in Economics so that 22% of the sample
will consist of Korean students and 78% non-Korean students, and that the sample is random
within these two groups. In this case, can you write down the joint density funciton of the
sample, if you know fXk

(x) and fXnk
(x)?
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Typically, it is easier to maximize an additive function than it is to maximize
a multiplicative function.4 5

1.2 Some examples of maximum likelihood estimators

1.2.1 Assume the rv X has a Bernoulli distribution

That is, assume

f(x; p) =

8<: px(1� p)1�x if x = 0
px(1� p)1�x if x = 1

0 otherwise

where 0 < p � � < 1.

We want pml. Assume we have a random sample of 10 observations (the
sample consists of zeros and ones). In this case

L(x1; x2; :::; xn; �) =
10Y
i=1

fX(xi; �)

=

10Y
i=1

pxi(1� p)1�xi

So, pml is that p that maximizes pml. pml is also that p that maximizes

lnL(x1; x2; :::; xn; �) =
10X
i=1

ln [fX(xi; �)]]

=
10X
i=1

ln
�
pxi(1� p)1�xi

�
=

10X
i=1

fxi ln p+ (1� xi) ln(1� p)g

=
10X
i=1

xi ln p+
10X
i=1

(1� xi) ln(1� p)

= ln p
10X
i=1

xi + ln(1� p)
10X
i=1

(1� xi)

4Qn
i=1 fX(xi; �) will often be a very small number, most of the terms will be fractions,

and if, for example one has a sample of a thousand, the value of the likelihood function is the
product of 1000 fractions.

5Note that
Pn
i=1 ln [fX(xi; �)]] will be a negative number, bounded from above by zero.
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Note that
10X
i=1

xi = 10�x

and
10X
i=1

(1� xi) = 10�
10X
i=1

xi = 10� 10�x = 10(1� �x)

so

lnL(x1; x2; :::; xn; �)

= ln p
10X
i=1

xi + ln(1� p)
10X
i=1

(1� xi)

= 10�x ln p+ 10(1� �x) ln(1� p)

To �nd pml we want to maximize 10�x ln p+ 10(1� �x) ln(1� p) with respect to
p.6

Make up a sample with 10 observations and use the Min or Max command
in Mathematica to �nd pml.

Then do it the old fashion way in terms of any random sample with 10
observations. That is, use calculus to maximize 10�x ln p + 10(1 � �x) ln(1 � p)
with respect to p.

d lnL

dp
= 10�x(

1

p
) + 10(1� �x)( 1

1� p )(�1)

= 10�x(
1

p
)� 10(1� �x)( 1

1� p )

Set this equal to zero to �nd the critical point

10�x(
1

p
)� 10(1� �x)( 1

1� p ) = 0

, Solution is: fp = �xg. That is, �x (the sample mean) is the maximum likelihood
estimate of p.

To get a visual feel for what is going on, I am going to plot 10�x ln p+10(1�
�x) ln(1� p) for three di¤erent values of of �x: �x = :9, �x = :3 and �x = :7

6Note that the information in the data required to �nd this ml estimate is completely
contained by the sample average, �x. In these cases, �x is deemed a su¢ cient statistic because
it contains su¢ cient information to estimate the parameter. It does not matter who was a
sucess and who was a failure, only the proportion of sucesses.

5



10.80.60.40.2

­5

­10

­15

­20

­25

­30

­35

p

lnL

p

lnL
lnL: green x = :9, red x = :7, black x = :3

6



The Bernoulli and Binomial - another way to solve the above prob-
lem Our sample of n consists of n repeated Bernoulli trials (draws). It is well
known that the number of sucesses (ones) in those n trials has a Binomial dis-
tribution. That is, if one has

Pn
i=1 xi sucesses in n trials

f(
nX
i=1

xi) =

�
nPn
i=1 xi

�
p(
P
xi)(1� p)n�

Pn
i=1 xi

where
�

nPn
i=1 xi

�
is the binomial coe¢ cient. If n = 10

f(
10X
i=1

xi) =

�
10P10
i=1 xi

�
p(
P
xi)(1� p)n�

P
xi

Therefore, another way to write the likelihood function (and log likelihood func-
tion) for our problem is

L(x1; x2; :::; xn; �) =

�
10P10
i=1 xi

�
p(
P
xi)(1� p)n�

P
xi

and

lnL(x1; x2; :::; xn; �) = ln

�
10P10
i=1 xi

�
+ (
X

xi) ln p+ (
n�

P
xi) ln(1� p)

Note that the �rst term is not a function of p. So

d lnL

dp
= (

X
xi)
1

p
� (n�

P
xi)(

1

1� p )

= 10(�x)
1

p
� 10(1� �x)( 1

1� p )

Set this equal to zero and solve for p to determine that pml = �x, just what we
got when we did it the other way.
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1.2.2 Assume the rv X has a Poisson distribution

X has a Poisson distribution if

fX(x) =
e���x

x!
for x = 0; 1; 2; 3; ::::

where � > 0. The Poisson is a discrete distribution that can take only integer
values. It is often, incorrectly, the distribution of choice when one wants to
count something; e.g. the number of times Americans get married, or, to make
a bad pun, the number of �sh caught in a day of �shing.

For the Poisson7

E[x] = � = var[x]

In earlier notes we assumed that the number of marriages by individuals now
dead has a Poisson distribution. This seems reasonable since the number of
times one has been married is, hopefully, a nonnegative integer.

Further assume a random sample of 5 observations (0,0,2,2,7).

Write down the likelihood function and the log likelihood function

L(x1; x2; :::; x5;�) =
5Y
i=1

fX(xi;�) =
5Y
i=1

e���xi

xi!

and

lnL(x1; x2; :::; x5;�) =
5X
i=1

ln fX(xi;�)

=
5X
i=1

ln

�
e���xi

xi!

�

=
5X
i=1

ln(e���xi)� ln(xi!)

=

5X
i=1

ln(e��) + ln(�xi)� ln(xi!)

5X
i=1

��+ xi ln(�)� ln(xi!)

= �5�+ ln(�)
5X
i=1

xi �
5X
i=1

ln(xi!)

= �5�+ ln(�)5�x� ln(xi!)
7 It is obviously restrictive to assume that the mean and variance are equal. This restriction

can be relaxed by, for example, assuming a negative binomial distribution. See, for example,
MGB pages 99 and 438, and Greene pages 939� 940.
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Since the term containing xi! does not contain �, �x is a su¢ cient statistic.
Further note that the � that maximizes �5� + ln(�)5�x � ln(xi!) is also the �
that maximizes �� + ln(�)�x, so let�s �nd the � that maximizes �� + ln(�)�x.8
Let�s graph this function with � and �x on the horizontal plane and lnL� on the
vertical axis.
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Now graph some slices of the above. Assuming �x = 1
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8Not that this function is not restricted to the negative range because it is not the ln of
the likelihood function, a term in the ln of the likelihood function is omitted.
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Now consider �nding �ml the old-fashioned way

d lnL

d�
= �5 + 5�x 1

�

Set this equal to zero and solve for �

�5 + 5�x 1
�
= 0

, Solution is: f�ml = �xg

Now assume the a speci�c random sample of 5 observations (0,0,2,2,7).
In this numerical example, �x = 2:2 (the average of 0; 0; 2; 2; 7) so �ml = 2:2,

as indicated above. Wow.

Then I let my software (Mudpad) �nd the answer.

��+ ln(�)(2:2) Candidate(s) for extrema: f�0:465 39g ; at ff� = 2: 2gg
Let�s get the estimated probability associated with the �rst eight integer

values

PoissonDen (0; 2:2)

0:110 8; that is, there is a 11% chance one will not get married

PoissonDen (1; 2:2)

0:243 77; that is, there is a 24% change one will marry once

PoissonDen (2; 2:2)

: 0:268 14; that is, there is a 26% chance one will marry twice

PoissonDen (3; 2:2)

: 0:196 64; a 19% chance one will marry thrice

PoissonDen (4; 2:2)

: 0:108 15; that is, there is a 10% change one will marry four times

PoissonDen (5; 2:2)

: 4: 758 7� 10�2;; that is, there is a 4% chance one will marry �ve times

PoissonDen (6; 2:2)
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: 1: 744 8� 10�2; a 1% chance one will marry six times

PoissonDen (7; 2:2)

: 5: 483 8� 10�3; a :5% chance that one will marry seven times.

The probability that one will marry twelve times is

PoissonDen (12; 2:2)

: 2: 973 6� 10�6, which is not much.

Graphing this estimated Poisson for 0 through 7marriages PoissonDen (k; 2:2) =
2:2ke�2:2

k!
(0; 0; 0; 0:110 8; 0; 0; 1; 0; 1; 0:243 77; 1; 0; 2; 0; 2; 0:268 14; 2; 0; 3; 0; 3; 0:196 64; 3; 0; 4; 0; 4; 0:108 15; 4; 0; 5; 0; 5;

4: 758 7� 10�2; 5; 0; 6; 0; 6; 1: 744 8� 10�2; 6; 0; 7; 0; 7; 5: 483 8� 10�3; 7; 0)
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Poisson distribution with � = 2:2

That is, E[x] = 2:2. What is the maximum likelihood estimate of the vari-
ance? 2:2
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Now let�s make this Poisson maximum likelihood problem a little
more interesting. Assume, we know how old everyone is and that everyone
in the population of interest is still alive.

married = xi agei
0 12
0 50
2 30
2 36
7 97

That is, we know each individual�s age, and suspect that there might be a
relationship between how many times one has been married and one�s age.

How would you change the above Poisson model to take this into account?
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One could assume that � is a function of age; e.g.

�i = �0agei

Making � a linear function of age is simple by not plausible, so let�s "just
do it."
In which case,

lnL(x1; x2; :::; x5; age1; :::age5;�0; ) =
5X
i=1

ln fX(xi;�0agei)

=
5X
i=1

ln

�
e�(�0age)(�0agei)

xi

xi!

�

=

5X
i=1

ln(e�(�0agei)(�0agei)
xi)� ln(xi!)

=
5X
i=1

ln(e�(�01age)) + ln((�0agei)
xi)� ln(xi!)

=
5X
i=1

�(�0agei) + xi ln(�0agei)� ln(xi!)

=

"
��0

5X
i=1

agei +

5X
i=1

xi ln(�0agei)�
5X
i=1

ln(xi!)

#
Now let�s take the partial with respect to �o

@ lnL(x1; x2; :::; x5;�0)

@�0
=

@
h
��

0

P5
i=1 agei +

P5
i=1 xi ln(�0agei)�

P5
i=1 ln(xi!)

i
@�1

= �
5X
i=1

agei +

5X
i=1

xi
@ ln(�0agei)

@�0

= �
5X
i=1

agei +

5X
i=1

xi
agei

(�0agei)

= �
5X
i=1

agei +
5X
i=1

xi
1

�0

= �
5X
i=1

agei +
1

�0

5X
i=1

xi

= �5age+ 5�x
�0

Set this equal to zero and solve for �0.

�5age+ 5�x
�0
= 0
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, Solution is �x
age , average number of marriages divided by average age, and

�0ml
=

�x

age

So,

�i = �0agei

=
�xagei
age

This is interesting, our expectation of one�s number of marriages is the sam-
ple average, �x, weighted by agei

age (the individual�s age as a proportion of the
average age in the sample.

The ml estimate of �0 for the sample at hand is something like :0488

Now make the problem more interesting by assuming.

� = �0 + �1agei

That is, estimate a slope and an intercept. Try and work this out on your own.
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1.2.3 Assume some random variable X has a normal distribution,
that is

fX(x;�x; �
2
x) =

1p
2��2x

e
�( 1

2�2x
)(x��x)2

We draw a random sample from fX(x;�x; �
2
x) of n observations from this dis-

tribution.

We want to �nd the ml estimators of �x and �
2
x.

This is the most famous ml problem
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In this case,

L(x1; x2; :::; xn;�x; �
2
x) =

nY
i=1

fX(x;�x; �
2
x) =

nY
i=1

1p
2��2x

e
�( 1

2�2x
)(xi��x)2

,because each observation is independent, and the ln of the likelihood function
is9

lnL(x1; x2; :::; xn;�x; �
2
x) = ln

nY
i=1

fX(x;�x; �
2
x)

= ln
nY
i=1

ln
1p
2��2x

e
�( 1

2�2x
)(xi��x)2

= ln
nY
i=1

(2�)�1=2(�2x)
�1=2e

�( 1
2�2x

)(xi��x)2

=
nX
i=1

ln((2�)�1=2(�2x)
�1=2e

�( 1
2�2x

)(xi��x)2)

nX
i=1

ln((2�)�1=2 + ln(�2x)
�1=2 ln[e

�( 1
2�2x

)(xi��x)2 ])

=

nX
i=1

�
�1
2
ln(2�)� 1

2
ln(�2x)� (

1

2�2x
)(xi � �x)2

�

= �n
2
ln(2�)� n

2
ln�2x � (

1

2�2x
)

nX
i=1

(xi � �x)2

We want to maximize this with respect to �x and �
2
x.

9Note that the likelihood function is a n�variate normal with zero covariances.
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Take the partials

@[�n
2 ln(2�)�

n
2 ln�

2
x � ( 1

2�2x
)
Pn

i=1(xi � �x)2]
@�x

=

�
�n�x �

Pn
i=1 xi

�2x

�
and

@[�n
2 ln(2�)�

n
2 ln�

2
x � ( 1

2�2x
)
Pn

i=1(xi � �x)2]
@�2x

=

Pn
i=1(xi � �x)2 � n�2x

2(�2x)
2

Set these both equal to zero and solve for �x and �
2
x. Start with the �rst

equation �
�n�x �

Pn
i=1 xi

�2x

�
= 0

Note that the �x that solves this is �x =
1
n

Pn
i=1 xi. That is, the maximum

likelihood estimate of �x is
1
n

Pn
i=1 xi = �x

Plug this into the second partial, set equal to zero, and solve for the maxi-
mum likelihood estimate of �2xPn

i=1(xi � �x)2 � n�2x
2(�2x)

2
= 0

That is, solve
Pn

i=1(xi � �x)2 � n�2x for �2x, which is

�̂2x =
1

n

nX
i=1

(xi � �x)2

So the maximum likelihood estimate of �x is �x and the maximum likelihood
estimate of �2x is

1
n

Pn
i=1(xi � �x)2.

Note that the �rst is unbiased, the second is not - both are asymtotically
unbiased, a term we have not de�ned.
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Make up some data - maybe 4; 7; 1 and �nd the max likelihood estimates.
The log likelihood function with unnecessary terms removed is.

�n
2 ln�

2
x� ( 1

2�2x
)
Pn

i=1(xi��x)2 = � 3
2 ln�

2
x� ( 1

2�2x
)[(4��x)2+ (7��x)2+

(1� �x)2]
Plotting this as a function of �x and �

2
x

5 4 3 2 1
107.552.500

­25
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­75

­100

­125
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Ux

lnLvar

Ux

lnL

� 3
2 ln�

2
x� ( 1

2�2x
)((4��x)2+(7��x)2+(1��x)2) Candidate(s) for extrema:�

� 3
2 ln 6�

3
2

	
; at

��
�2x = 6; �x = 4

�	
Note that we maximize LnL by taking its derivative with respect to the

parameter and searching for a local interior maximum. We could also have used
a computer search algorithm such as MIN in Mathematica to �nd b�x and b�2x.
That is,

Minimize � Ln L
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1.3 A more general max lik problem

Consider the following problem. Assume that the ith random variable Yi is
distributed10

fY
�
yi : �yi ; �

2
y

�
where i = 1; 2; :::; n

That is, the only thing that distinguishes the distributions of Yi and Yj is �yi
vs. �yj . It might look as follows (the subsript is suppressed in this example
�gure). Note that we are assuming the density has two parameters, the mean
and the variance.

We know the form of fY
�
yi : �yi ; �

2
y

�
but not the speci�c value of �2y or

values of �y1 ; �y2; :::�yn . We want to estimate them.

10Note that I am now naming the random variable Y rather than X. This is more conven-
tional when one assumes that the expected value of Y varys across observations as a function
of one of more explanatory variables. Denoting the dependent variable Y is the convention in
regression analysis.
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Further assume

�yi = �+ �
0xi where i = 1; 2; ::::; n

where the vector xi is observed. For the moment, assume xi is a scalar. In
this framework, xi is not a random variable from our perspective, rather it is
assumed �xed in repeated samples. In which case, fY

�
yi; �+ �xi; �

2
y

�
and the

parameters are �; �; and �2y: Note that �yi is a linear function of xi and, by
assumption, �2yi = �

2
y 8 i:

Imagine a random sample of n observations of (yi; xi) ; i = 1; 2; ::::; n and we
want the maximum likelihood estimator of �; �; and �2y.

11

L
�
y1; y2; :::; yn; x1; x2; :::; xn;�; �; �

2
y

�
=

nY
i=1

fY
�
yi; �+ �xi; �

2
y

�
and

lnL =
nX
i=1

ln fY
�
yi; �+ �xi; �

2
y

�
We get the maximum likelihood estimator of �; �; and �2y by maximizing lnL
with respect to these parameters.

11Given xi, yi is a random draw from fY
�
y; �+ �xi; �

2
y

�

21



1.3.1 For example, if one assumes a normal distribution, which one
is not forced to do

fY
�
yi; �+ �xi; �

2
y

�
=

1q
2��2y

e
�
�

1
2�2y

�
[yi�(�+�xi)]2

That is (this normality assumption implies an additive normally distributed ")

yi = �+ �xi + "i

where
"~N

�
0; �2y

�
This is the classical linear regression model (CLR model). In which case,

lnL () =

nX
i=1

ln fY
�
yi; �+ �xi; �

2
y

�
=

nX
i=1

ln

"
(2�)

� 1
2
�
�2y
�� 1

2 e
�
�

1
2�2y

�
[yi�(�+�xi)]2

#

=
nX
i=1

�
�1
2
ln (2�)� 1

2
ln
�
�2y
�
�
�
1

2�2y

�
(yi � [�+ �xi])2

�

= �n
2
ln (2�)� n

2
ln
�
�2y
�
�
�
1

2�2y

� nX
i=1

(yi � [�+ �xi])2
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The maximum likelihood estimates of �; �; and �2y are those values of �; �;
and �2y that maximize lnL () : Lets �nd them.

d lnL

d�
= 2

�
� 1

2�2y

� nX
i=1

(yi � �� �xi) (�1)

=

�
1

�2y

� nX
i=1

(yi � �� �xi) set = 0 (1)

d lnL

d�
= 2

�
� 1

2�2y

� nX
i=1

(yi � �� �xi) (�xi)

=
1

�2y

nX
i=1

(yi � �� �xi) (xi)

=
1

�2y

nX
i=1

�
yixi � �xi � �x2i

�
set = 0 (2)

d lnL

d�2y
= �

�n
2

� 1

�2y
+

�
1

2�4y

� nX
i=1

(yi � �� �xi)2

=

�
1

2�2y

�"
�n+ 1

�2y

nX
i=1

(yi � �� �xi)2
#

=

�
1

2�2y

�"
1

�2y

nX
i=1

(yi � �� �xi)2 � n
#
set = 0 (3)

There are three equations in three unknowns
�
�; �; �2y

�
: Solve for �ml; �ml; �

2
yml
:

Assuming �2y > 0; from the �rst equation we know that
nX
i=1

(yi � �� �xi) = 0

but
nX
i=1

(yi � �� �xi) = �n�+
nX
i=1

(yi � �xi)

= �n�+
nX
i=1

yi � �
nX
i=1

xi

Noting that
nP
i=1

yi = n�y and
nP
i=1

xi = n�x;

nX
i=1

(yi � �� �xi) = �n�+ nY � �nx = 0

= ��+ �y � ��x = 0 implying
� = �y � ��x (4)
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Plug this result into the second equation

d lnL

d�
=
1

�2y

nX
i=1

�
yixi � �xi � �x2i

�
= 0 (5)

to obtain

1

�2y

nX
i=1

�
yixi � (�y � ��x)xi � �x2i

�
= 0

nX
i=1

�
yixi � �yxi + ��xxi � �x2i

�
= 0

nX
i=1

yixi � �y
nX
i=1

xi + ��x
nX
i=1

xi � �
nX
i=1

x2i = 0

nX
i=1

yixi � �yn�x+ ��xn�x� �
nX
i=1

x2i = 0

�n�x2 � �
nX
i=1

x2i = n�y�x�
nX
i=1

yixi

�

 
n�x2 �

nX
i=1

x2i

!
= n�y�x�

nX
i=1

yixi (6)

implying

b�ml = n�y�x�
nP
i=1

yixi

n�x2 �
nP
i=1

x2i
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There are many common ways of expressing b�ml. If one multiplies
the numerator and denominator by �1, one obtains

�ml =

nP
i=1

yixi � n�y�x
nP
i=1

x2i � n�x2

To obtain another common form of �ml note thatX
(yi � �y) (xi � �x) =

X
[yixi � yi�x� �yxi + �x�y]

=
X

yixi � �x
X

yi � �y
X

xi + n�x�y�x

=
X

yixi � �xn�y � �y
X

xi + n�x�y

=
X

yixi � �y
X

xi

=
X

yixi � n�y�x

, which is the numerator in the above expressions for �ml.
And X

(xi � �x)2 =
X�

x2i � xi�x� �xxi + �x2
�

=
X

x2i � �x
X

xi � �x
X

xi + n�x
2

=
X

x2i � �xn�x� �xn�x+ n�x2

=
X

x2i � n�x2 � n�x2 + n�x2

=
X

x2i � n�x2

which is the denominator in the above expressions for �ml. So,

�ml =

nP
i=1

(yi � �y) (xi � �x)
nP
i=1

(xi � �x)2

(MGB, p. 499). Or in terms of the deviations around the means

eyi � yi � y
and exi � xi � xb�ml = PeyiexiPex2i
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Now lets calculate b�ml: Recall that
� = �y � ��x

Plug in �ml:
�ml = �y � �ml�x

to obtain

�ml = �y �
�x
PeyiexiPex2i

Looking ahead, the maximum likelihood estimates of � and �, assuming

yi = �+ �xi + "i

where
"i~N

�
0; �2"

�
are also the least square estimates. That is, for the Classical Linear Regression
Model, the maximum likelihood estimates of � and � are equivalent to the least
squares estimates.
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Now �nd the maximum likelihood estimates of �2y: Recall the third
�rst-order condition�

1

2�2y

�"
1

�2y

nX
i=1

(yi � �� �xi)2 � n
#

= 0"
1

�2y

nX
i=1

(yi � �� �xi)2 � n
#

= 0

1

�2y

nX
i=1

(yi � �� �xi)2 = n

1

�2y
=

n
nP
i=1

(yi � �� �xi)2

�2y =
1

n

nX
i=1

(yi � �� �xi)2

So the maximum likelihood estimator of �2y is

�2yml
=
1

n

nX
i=1

(yi � �ml � �mlxi)
2

In summary, we have just derived the maximum likelihood estimates of �; �;
and �2y with a random sample of size n assuming in the population

yi = �+ �xi + "i

where
"i~N

�
0; �2"

�
That is, we have derived the maximum likelihood estimators for �; �; and �2y
for the classical linear regression model.
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1.4 Lets do another maximum likelihood problem: return
to the Bernoulli problem

Assume two alternatives and the probability that individual i chooses alternative
1 on any trial, t, is pi.12 That is,

fX (xit : pi) = pxiti (1� pi)1�xit for xit = 0 or 1

= 0 otherwise

where i = 1; 2; ::::; n. xit = 1 if individual i chooses alternative 1 on trial t, and
zero otherwise, t = 1; 2; :::::; T:

Let xi be the number of times individual i chooses alternative 1 in T trials.

xi =
TX
xit

t=1

In which case, we can (have) shown that

fXi
(xi : pi; T ) =

�
T
xi

�
pxii (1� pi)

T�xi i = 1; 2; :::; n

Further assume13

pi = �+ �Gi

where
Gi = 1 if male and zero otherwise

Note that the variable Gi, which can only take one of two values, 0 or 1. Vari-
ables with this property are typically referred to as dummy variables.

12Note that we are allowing p to vary across individuals, but, for a given individual, not
across trials.
13Note that this functional speci�cation would allow pi to be outside of the zero to one

range. I exclude that possibility below.
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To make things simple, lets says we know that � = :10 (God told us).
This implies that Pi = :1 if female. Also God told us that � equals either
0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; or 0:8:(Note how God simpli�ed the problem for
us)

We have a random sample of n individuals. That is, for n independent
individuals we observe the choices each makes on T independent trials. We
observe T trials for each of the n individuals

What is the maximum likelihood estimator of �?

First note that

fX (xi; pi; T ) =

�
T
xi

�
pxii (1� pi)

T�xi

=

�
T
xi

�
(:1 + �Gi)

xi (1� (:1 + �Gi))T�xi

Therefore,

L =
nY
i=1

�
T
xi

�
(:1 + �Gi)

xi (1� (:1 + �Gi))T�xi

So,

lnL =

nX
ln

i=1

��
T
xi

�
(:1 + �Gi)

xi (1� (:1 + �Gi))T�xi
�

=
nX
i=1

�
ln

�
T
xi

�
+ xi ln (:1 + �Gi) + (T � xi) ln (1� 0:1� �Gi)

�

=
nX
i=1

�
ln

�
T
xi

�
+ xi ln (:1 + �Gi) + (T � xi) ln (0:9� �Gi)

�
The maximum likelihood estimator of � is the � that maximizes the above
equation but it is also the � that maximizes

nX
i=1

[xi ln (:1 + �Gi) + (T � xi) ln (0:9� �Gi)]

for a given random sample. One would calculate this for � = 0:1; 0:2; :::0:8 and
the �ml is the one that maximizes the function.
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For example, assume T = 2 and n = 3 such that

x11 = 1

x12 = 1

x21 = 1

x22 = 0

x31 = 0

x32 = 0

where xnt = 1 if individual n choose alternative 1 on trial t.

Suppose we know that individuals 1 and 2 are males and individual 3 is a
female. What is the maximum likelihood estimate of �, �ml? You �gure it out.

Remember that for maximum likelihood estimation of the above type, one
needs to know the form of fx (x; �)
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1.5 why we like max lik technique

1. very general

2. Estimators have desirable asymtotic statistical properties under very gen-
eral conditions.

3. doesn�t require a random sample (but having a random sample greatly
simpli�es the process)

4. Easy to do hypothesis testing and tests of signi�cance (see below)

5. If �ml is the maximum likelihood estimator of � and there is exists some
function of �, g(�), then g(�ml) is the maximum likelihood estimator of
g, gml. This is called the invariance principle, and it will greatly simplify
your life in econometrics.

The drawback? of the ML technique is that one needs, usually, to assume
knowledge of fX(x; �), but mostly we do that anyway.
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1.6 M.L. hypotheis testing and con�dence intervals

1.6.1 the likelihood ratio test

Need to check all of the notation here for consistency and consistency
with earlier sections
Imagine that one assumes some fX(x; �) where � is a vector, � � �1; �2; :::; �k.

Consider theml estimator of the vector � with and without constraints/restrictions
on that vector. For example, compare estimation where you assume �2 = 0
with estimates where you do not assume, �2 = 0. In the one case, you estimate
�1; �2; :::; �k, in the other you estimate �1; �3; :::; �k with �2 set equal to 0, so
estimate one less parameter.14 Refer to the former vector as �1 and the latter,
more restrictive vector, as �0.

Estimation of �0 is more constrained that estimation of �1and this has impor-
tant implications. When one does ml estimation one maximizes the likelihood
function, and when one is more constrained, the maximum cannot be greater
than when it is less constrained: adding constraints cannot increase the maxi-
mum value of the likelihood function.

In more detail: We have de�ned the likelihood function in general as L(X1; X2; :::Xn :
�), where the X are not random variables; they are the sample. If one eval-
uate it with a speci�c sample one has L(x1; x2; :::xn : �) which is a function
of only the � since the xi are numbers. If one plugs in estimates of the �, b�,
L(x1; x2; :::xn : b�) is a number. If one plugs in �ml, L(x1; x2; :::xn : �ml) is the
maximum number L() can take for this sample; that is why the �ml are the ml
estimates.

Compare L(x1; x2; :::xn : �
0
ml) and L(x1; x2; :::xn : �

1
ml) where the �

0 is more
restricted/constrained than �1. By the logic above, L(x1; x2; :::xn : �

0
ml) �

L(x1; x2; :::xn : �
1
ml), the former typically a larger negative number.

The likelihood ratio test: Put simply, if L(x1; x2; :::xn : �
0
ml) is su¢ ciently

smaller than L(x1; x2; :::xn : �
1
ml) we conclude that the restrictions imposed in

�0 were not appropriate: we reject the null hypothesis that � = �0.

To simplify the notation, let L�0ml
� L(x1; x2; :::xn : �0ml) and L�1ml

�

L(x1; x2; :::xn : �
1
ml). So

L
�0
ml

L
�1
ml

� 1, and we decide the restriction that � = �0 is

a bad idea if
L�
�0

L�
�1
is su¢ ciently less than one.

14For example, one assumes N(x : �; �2). One could use maximum likelihood to �nd
estimates of � and �2, or one might simplify the problem by assuming �2 = 1, reducing by
one the number of parameters to estimate.
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But how much less than one must it be before one rejects the null hypothesis
that � = �0? That is up to you.

To answer this question statistically, we need to investigate the distribution

of
L
�0
ml

L
�1
ml

; it is a random variable that varies across samples. I don�t know the

distribution of
L
�0
ml

L
�1
ml

but I do know the distribution of C = �2(lnL�0ml
�lnL�1ml

).

C is a r.v. with a Chi-Squared distribution, and its parameter ("degrees of
freedom") equals to the number of restriction in �0 that are not restrictions in
�1.

One sets a critical level for C and then sees whether the realized c is greater
than this critical level. If it is, one reject the null hypothesis that � = �0. If
not, one fails to reject the null hypothesis.

For example if I wanted to reject � = �0 only 5% of the time when it is true
(� = �0), I would choose ccrit such that only 5% of the Chi-squared density
lies to the right of ccrit. If, for example, the degrees of freedom (number of
additional restrictions) is 1, ccrit�:05 = 3:84. If the degrees of freedom (number
of additional restrictions) is 3, ccrit�:05 = 7:81.

So, imagine I ml estimated my model with and without the single restriction
that �2 = 0. I would then calculate �2(lnL�0ml

� lnL�1ml
). If is more that 3:84,

I would reject the null hypothesis that �2 = 0. If it is less than 3:84 I would fail
to reject this null hypothesis.

53.752.51.25

1

0.75

0.5

0.25

0

c

f(c)

c

f(c)

Chi-squared distribution with one degree of freedom (param=1)
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Note that the likelihood ratio test just presented is very general: �2(lnL�0ml
�

lnL�1ml
) has a Chi-square distribution no matter the form of fX(x; �) or the

number of restrictions, all this is required is that �0 is a special case (restricted
case) of �1. Many Chi-squared tests in the literature, while not appearing to be
likelihood ratio tests, are special cases of the likelihood ratio test.

For example: assume the rv X has a Bernoulli distribution and in
a random sample of 10, �x = :3 In which case, lnL(x1; x2; :::; xn; p) =
10(:3) ln p+ 10(1� :3) ln(1� p). Graphing this

0.60.50.40.30.2

­6.25

­6.5

­6.75

­7

­7.25

­7.5

­7.75

p

lnL

p

lnL
lnL : x = :3, lnL�

�1
= �6: 108 6, lnL�

�0
= �6: 931 5

pml = :3 and the maximum value of lnL�p, �6: 108 6 , is at pml = :3

Now consider the null hypothesis that p = :5, a random allocation.15 In
which case lnL:5 = 10(:3) ln(:5) + 10(1� :3) ln(1� (:5)) = �6: 931 5, the black,
dotted horizontal line on the above graph.

Is lnL:5 = �6: 931 5 su¢ ciently less than lnL�p = �6: 108 6 to reject the null
hypothesis that p = 5?

15Note that there are no estimated parameters in the restricted model.
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Calculate the statistic �2(lnL:5� lnL�p) = �2(�6: 931 5� (�6: 108 6)) = 1:
645 8 < 3:84 � �2ccrit�:05;df=1; so in this example, one fails to reject the null
hypothesis that p = :5

Most of the hypothesis tests I do are likelihood-ratio tests.

This has been a brief but important introduction to hypothesis testing.

1.6.2 Using the likelihood ratio statistic to construct a con�dence

interval

It is easy, at least conceptually, to construct a con�dence interval using the
likelihood ratio statistic.

To start simply, assume the ln likelihood function is a function of only onE
parameter, �, so the value of the likelihood function evaluated at � = �ml is
L�ml

� L(x1; x2; :::xn : �ml), a number.

The likelihood function might look as follows, where the blue line represents
the level L�ml

lnL as a function of �: blue line is lnL�ml
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Recollect that �2(lnL� � lnL�ml
) has a Chi-square distribution and note

that after estimation lnL�ml
is a number. Choose a critical value for the con-

�dence interval; for example, with one degree of freedom, for a 95% con�dence
interval �2ccrit�:05;df=1 = 3:84.

So � will be in the con�dence interval if �2(lnL� � lnL�ml
) � 3:84. To �nd

the interval,one simple �nds all those values of � in this range.

One constructs the interval by numerically �nding all of the � for which
�2(lnL� � lnL�ml

) � 3:84. The restriction �2(lnL� � lnL�ml
) � 3:84 implies

lnL� � lnL�ml
� 1:92.16

The following is an example graph of lnL� as a function of � where the blue
line represents lnL�ml

and the orange line lnL� = lnL�ml
� 1:92

In this example, lnL� = lnL�ml
� 1:92 = �6: 108 6� 1:92 = �8: 028 6

lnL function of �: blue line lnL�ml
, orange the critical lnL�

Note that the con�dence interval for � is the projection onto the � axis of
the orange line between the red lines.

Note that this technique works no matter the number of parameters; the
numerical �nding of the con�dence interval just becomes more di¢ cult.

16�2(lnL�� lnL�ml
) � 3:84 implies �(lnL�� lnL�ml

) � 1:92 implies (lnL�� lnL�ml
) �

�1:92 implies lnL� � �1:92 + lnL�ml
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If someone would like to do a replacement assignment, they can come up
with a two-parameter example where you show the con�dence "interval" as a
two-dimensional eclipse in �1; �2 space. That is, specify a density function with
two random variables. Assume a sample. Derive the m.l. estimates for your
sample, derive the joint con�dence interval on �1; �2.

Further note that this simple method of �nding con�dence intervals for vec-
tors of parameters is typically not the method used in most software packages.
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See my notes on chi-square tests in the hypothesis testing section

1.6.3 example: a con�dence interval for our Bernoulli

Consider the Chi-square statistic �2(lnLp � lnL�p1) where, from above,
lnLpml

= �6: 108 6. So the statistic, written as a function of only lnLp is
�2(lnLp0 + 6: 108 6).

One will not reject the null hypothesis if �2(lnLp + 6: 108 6) � 3:84 �
�2ccrit�:05;df=1

Solve �2(lnLp+6: 108 6) � 3:84 for lnLp; The solution is lnLp � �8: 028 6:
one does reject any null hypothesis with lnLp � �8: 028 6. The con�dence
interval for p is simple those p consistent with Lp � �8: 028

In our example, lnLp = 10(:3) ln(p)+10(1� :3) ln(1�(:p)), so the restriction
on the con�dence interval is lnLp = 3 ln(p) + 7 ln(1� (:p)) � �8: 028

Doing a simple grid search over values of p

L�p = 3 ln(p) + 7 ln(1� (p)) whether p is in the con�dence interval
3 ln(:05) + 7 ln(1� (:05)) = �9: 346 2 p = :05 is not in the con�dence interval
3 ln(:075) + 7 ln(1� (:075)) = �8: 316 5 p = :075 is not in the con�dence interval
3 ln(:08) + 7 ln(1� (:08)) = �8: 160 9 p = :08 is not in the con�dence interval
3 ln(:085) + 7 ln(1� (:085)) = �8: 017 1 p = :085 is in the con�dence interval
3 ln(:1) + 7 ln(1� (:1)) = �7: 645 3 p = :1 is in the con�dence interval
3 ln(:2) + 7 ln(1� (:2)) = �6: 390 3 p = :2 is in the con�dence interval
3 ln(:3) + 7 ln(1� (:3)) = �6: 108 6 p = :3 is in the con�dence interval
3 ln(:4) + 7 ln(1� (:4)) = �6: 324 7 p = :4 is in the con�dence interval
3 ln(:5) + 7 ln(1� (:5)) = �6: 931 5 p = :5 is in the con�dence interval
3 ln(:6) + 7 ln(1� (:6)) = �7: 946 5 p = :6 is in the con�dence interval
3 ln(:61) + 7 ln(1� (:61)) = �8: 074 1 p = :61 is not in the con�dence interval
3 ln(:65) + 7 ln(1� (:65)) = �8: 641 1 p = :65 is not in the con�dence interval
3 ln(:7) + 7 ln(1� (:7)) = �9: 497 8 p = :7 is not in the con�dence interval

So, the con�dence interval is :085 � p � :6. Cool.

How do we interpret this con�dence interval? The con�dence interval is
a random "variable": it varies from sample to sample; :085 � p � :6 is the
estimated con�dence interval for one particular sample. Ninety-�ve percent of
these intervals will contain the true p.

Note again that this procedure generalizes to the case where � is a vector
of parameters. Put simply, the maximum likelihood con�dence interval for
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the parameter vector � are those � consistent with the restriction �2(lnL� �
lnL�ml

) � �2crit where �ml are the ml parameter estimates.

Note that while the likelihood-ratio based method for hypothesis testing
and constructing con�dence intervals has many charms, is not the only method
available for these tasks. Other methods include Wald statistics and Score
statistics. Wald methods are often computationally simpler, particular when
� has many dimensions. The di¤erent methods do not always give the same
results.

Con�dence intervals generated by the Wald method are the ones typically
crunched out by statistical software packages.

A later section of the course more generally discusses interval estimation and
hypothesis testing

1.7 Non-parametric maximum likelihood

see the review questions for max. lik.
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