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» The method of maximum likelihood provides estimators that have both
a reasonable intuitive basis and many desirable statistical properties.

» The method is very broadly applicable and is simple to apply.

» Once a maximume-likelihood estimator is derived, the general theory
of maximum-likelihood estimation provides standard errors, statistical
tests, and other results useful for statistical inference.

» A disadvantage of the method is that it frequently requires strong
assumptions about the structure of the data.
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1. An Example

» We want to estimate the probability 7 of getting a head upon flipping a
particular coin.
e We flip the coin ‘independently’ 10 times (i.e., we sample n = 10 flips),
obtaining the following result: HHTHHHTTHH.

e The probability of obtaining this sequence — in advance of collecting
the data — is a function of the unknown parameter =:
Pr(data|parameter) = Pr(HHTHHHTTHH |r)
= (1 — m)rrr(l — m)(1 — m)7m
= 7'(1—m)3
e But the data for our particular sample are fixed: We have already
collected them.

e The parameter 7 also has a fixed value, but this value is unknown, and
So we can let it vary in our imagination between 0 and 1, treating the
probability of the observed data as a function of .
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Maximum-Likelihood Estimation: Basic Ideas 3
e This function is called the likelihood function:
L(parameter|data) = L(r|HHTHHHTTHH)
= 771 —7)3
» The probability function and the likelihood function are given by the
same equation, but the probability function is a function of the data

with the value of the parameter fixed, while the likelihood function is a
function of the parameter with the data fixed.
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e Here are some representative values of the likelihood for different
values of :
7 | L(r|data) = 77(1 — 7)3
0.0
.0000000729
.00000655
.0000750
.000354
.000977
.00179
.00222
.00168
.000478
0.0
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e The complete likelihood function is graphed in Figure 1.

e Although each value of L(r|data) is a notional probability, the function
L(r|data) is not a probability or density function — it does not enclose
an area of 1.

e The probability of obtaining the sample of data that we have in hand,
HHTHHHTTHH, is small regardless of the true value of 7.

- This is usually the case: Any specific sample result — including the
one that is realized — will have low probability.

e Nevertheless, the likelihood contains useful information about the
unknown parameter 7.

e For example, = cannot be 0 or 1, and is ‘unlikely’ to be close to 0 or 1.

» Reversing this reasoning, the value of 7 that is most supported by the
data is the one for which the likelihood is largest.
e This value is the maximum-likelihood estimate (MLE), denoted 7.

e Here, 7 = .7, which is the sample proportion of heads, 7/10.
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L(r|data)
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Figure 1. Likelihood of observing 7 heads and 3 tails in a particular se-
guence for different values of the probability of observing a head, .
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» More generally, for n independent flips of the coin, producing a particular
sequence that includes = heads and n — z tails,

L(r|data) = Pr(data|r) = 7“(1 — m)"*
e We want the value of 7 that maximizes L(r|data), which we often
abbreviate L(r).
e It is simpler — and equivalent — to find the value of 7 that maximizes
the log of the likelihood
log, L(m) = xlog, ™ + (n — x)log (1 — )
e Differentiating log, L() with respect to = produces

dlog, L(m) =« 1
T =~ (- @) ——(-])
dm s 11—
T n—x
™ 1—m
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e Setting the derivative to 0 and solving produces the MLE which, as
before, is the sample proportion z/n.

e The maximum-likelihood estimator is 7 = X/n.
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2. Properties of Maximum-Likelihood
Estimators

Under very broad conditions, maximume-likelihood estimators have the
following general properties:
» Maximum-likelihood estimators are consistent.

» They are asymptotically unbiased, although they may be biased in finite
samples.

» They are asymptotically efficient — no asymptotically unbiased estimator
has a smaller asymptotic variance.

» They are asymptotically normally distributed.

» If there is a sufficient statistic for a parameter, then the maximum-
likelihood estimator of the parameter is a function of a sufficient statistic.
e A sufficient statistic is a statistic that exhausts all of the information in
the sample about the parameter of interest.
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» The asymptotic sampling variance of the MLE & of a parameter « can

be obtained from the second derivative of the log-likelihood:
1

[d?log, L(c)]
da?

e The denominator of V() is called the expected or Fisher information
[d?log, L(a)]
do?

e In practice, we substitute the MLE « into the equation for V(@) to
obtain an estimate of the asymptotic sampling variance, V(a).
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» L(a) is the value of the likelihood function at the MLE &, while L(«) is
the likelihood for the true (but generally unknown) parameter .
e The log likelihood-ratio statistic
L« ~
G? = —2log, % = 2[log, L(a) — log, L(«)]

follows an asymptotic chisquare distribution with one degree of

freedom.

- Because, by definition, the MLE maximizes the likelihood for our
particular sample, the value of the likelihood at the true parameter
value « is generally smaller than at the MLE « (unless, by good
fortune, @ and o happen to coincide).
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3. Statistical Inference: Wald,
Likelihood-Ratio, and Score Tests

These properties of maximum-likelihood estimators lead directly to three
common and general procedures for testing the statistical hypothesis
Hy o = ay.

1. Wald Test: Relying on the asymptotic normality of the MLE «, we
calculate the test statistic

which is asymptotically distributed as N (0, 1) under H,.
2. Likelihood-Ratio Test: Employing the log likelihood ratio, the test statistic

G% = —2log, 12(%0)) = 2[log, L(a@) — log, L(ayp)]

is asymptotically distributed as 3 under H,.

(© 2010 by John Fox York SPIDA




Maximum-Likelihood Estimation: Basic Ideas 13

3. Score Test: The ‘score’ is the slope of the log-likelihood at a particular
value of «, that is, S(a) = dlog, L(a)/dc.
e At the MLE, the score is 0: S(a) = 0. It can be shown that the score
statistic
S(an)

v Z(a)
is asymptotically distributed as N (0, 1) under H.

» Unless the log-likelihood is quadratic, the three test statistics can
produce somewhat different results in specific samples, although the
three tests are asymptotically equivalent.

» In certain contexts, the score test has the practical advantage of not
requiring the computation of the MLE & (because S, depends only on
the null value o, which is specified in H).

» The Wald and likelihood-ratio tests can be ‘turned around’ to produce
confidence intervals for a.

Sp =

2010 by John Fox York SPIDA
y

Maximum-Likelihood Estimation: Basic Ideas 14

» Figure 2 compares the three test statistics.
» Maximum-likelihood estimation and the Wald, likelihood-ratio, and score
tests, extend straightforwardly to simultaneous estimation of several

parameters.
» When the log-likelihood function is relatively flat at its maximum, as

opposed to sharply peaked, there is little information in the data about
the parameter, and the MLE will be an imprecise estimator: See Figure

3.
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Likelihood-ratio test
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Figure 2. Likelihood-ratio, Wald, and score tests.
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logeL (o) high information

low information

Figure 3. Two imagined log likelihoods: one strongly peaked, providing
high information about the the parameter «; and the other flat, providing
low information about .
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