Leave-One-Out

Observations:

B The quality of the test error estimate errg, in the hold-out method greatly depends on
the random split of the data set D into a training set and a test set.

B A poorly executed split can adversely affect the model evaluation.

M One way to mitigate the bias of the random split of D is to perform the split-train-test
cycle multiple times.

—p.1



Leave-One-Out

In the leave-one-out method we split the data set D of size [ into [ partitions of size 1
such that,

D=Q1UQ2U...UQi_1UQy,

and

where Q; = {(z;,y;)} and Q; = {(z;,y;)} fore,5 =1,...,land i # j.

Each partition @; is used systematically for testing exactly once whereas the remaining
partitions are used for training. Let P, = D — (); be the training set with respect to the
test partition Q; withz = 1, ..., [, then we can compute the error for each test partition as

errg, [fpi [k,A,C]] =L (yi,fpi [k,%C](fi)) ,

where fpi [k, A\, C] is the model trained on data set P; with parameters k, A, and C.

The test error errg, Is computed as the loss over the single element in the test partition

Qi.
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Leave-One-Out

The leave-one-out error (LOOE) is the average error over all partitions,

LOOEp [k, A, C] = Zeer [ Tk, A C]]

Observation: The leave-one-out error is an error estimate only in terms of the model
parameters.

We can compute the set of parameters that minimizes the leave-one-out error over all
partitions as,

(K™, \*,C*) = argmin LOOE ;, [k, \, C],
k. A,C

and this parameter set gives rise to the optimal model

Ffolk*, A%, C*].
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Leave-One-Out

Observation: For a data set D of length [ we have to build I models for each parameter
set evaluation. This implies that for most real-world data sets whose lengths is in the
thousands and perhaps millions of observations this approach becomes unfeasible.
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N-Fold
Cross-Validation

A good compromise between the potential bias of the hold-out method and the computational
complexity of the leave-one-out method is N-fold cross-validation.

Here we split the data set D into N partitions or folds with N < [ such that

D=Q1UQ2U... UQN-1UQN,
and
with |Q;| = |Q;| =1l/Nfori,j =1,..., N andi # j.

We will use each fold for testing exactly once and the remaining folds are used to train the models.
Let Q; be a fold of the dataset D, then we can construct our corresponding training set P; as

Pi =D — Qia
with: = 1,..., N. We can compute the error of some fold Q; as
A 1 A
1Qil _ = ,
(azj,yj)GQz

where _]Epi [k, A, C] is the model trained on dataset P; with parameters k£, A, and C.
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N-Fold
Cross-Validation

We compute the cross-validated error (CVE) of the parameter set k, A, and C as the
average over the individual fold errors,

N
CVEp [k, \,C] = %Zeeri [fpi [k, A, C]} .
=1

And we find the optimal parameter set by minimizing the cross-validated error,

(K™, \*,C*) = argmin CVEp [k, \, C] .
k,X,C

The optimal model fp, [k*, A*, C*] can then be constructed using the full data set D.
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N-Fold

> svm.model <- svm(Diagnosis ~ .,
data=wdbc.df,
type="C-classification",
kernel="polynomial",
degree=3,
cost=1000,
cross=10 )

> summary(svm.model)

10-fold cross-validation on training data:

Total Accuracy: 94.55185

Single Accuracies:

91.07143 94.73684 98.24561 96.49123 100
87.7193 94.73684 94.73684 94.73684 92.98246

Cross-Validation
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N-Fold
Cross-Validation

Kernel Cost Constant Training Error Cross-Validated Error

O

1 Linear 0.01 2.46% 3.51%
2 Linear 0.10 1.41% 2.46%
3 Linear 1.00 1.23% 2.81%
4 Linear 10.00 0.88% 3.34%
5 Linear 100.00 0.35% 3.34%
6 Linear 1000.00 0.35% 3.87%
-7 Polynomial, degree = 3 10.00 2.81% 4.39%
8 Polynomial, degree = 3 100.00 0.53% 3.34%
9 Polynomial, degree = 3 1000.00 0.00% 5.45%

Test Error
© — Training Error

Error [%]

Model Complexity [ID]
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