Regression and generalization

CE-717: Machine Learning
Sharif University of Technology

M. Soleymani
Fall 2016
Topics

- Beyond linear regression models
- Evaluation & model selection
- Regularization
- Probabilistic perspective for the regression problem
Recall: Linear regression (squared loss)

- Linear regression functions

 \[f : \mathbb{R} \to \mathbb{R} \quad f(x; \mathbf{w}) = w_0 + w_1 x \]

 \[f : \mathbb{R}^d \to \mathbb{R} \quad f(x; \mathbf{w}) = w_0 + w_1 x_1 + \ldots w_d x_d \]

 \[\mathbf{w} = [w_0, w_1, \ldots, w_d]^T \] are the parameters we need to set.

- Minimizing the squared loss for linear regression

 \[J(\mathbf{w}) = \| \mathbf{y} - X\mathbf{w} \|^2_2 \]

- We obtain \(\hat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y} \)
Beyond linear regression

- How to extend the linear regression to non-linear functions?
 - Transform the data using basis functions
 - Learn a linear regression on the new feature vectors (obtained by basis functions)
Beyond linear regression

- m^{th} order polynomial regression (univariate $f : \mathbb{R} \rightarrow \mathbb{R}$)

 $$f(x; w) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m$$

- Solution: $\hat{w} = (X'^T X')^{-1} X'^T y$

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad X' = \begin{bmatrix} 1 & x^{(1)}_1 & x^{(1)}_2 & \cdots & x^{(1)}_m \\ 1 & x^{(2)}_1 & x^{(2)}_2 & \cdots & x^{(2)}_m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x^{(n)}_1 & x^{(n)}_2 & \cdots & x^{(n)}_1 \end{bmatrix}, \quad w = \begin{bmatrix} \hat{w}_0 \\ \hat{w}_1 \\ \vdots \\ \hat{w}_m \end{bmatrix}$$
Polynomial regression: example

\[m = 1 \]

\[m = 3 \]

\[m = 5 \]

\[m = 7 \]
Generalized linear

- Linear combination of fixed non-linear function of the input vector

\[f(x; w) = w_0 + w_1 \phi_1(x) + \ldots + w_m \phi_m(x) \]

\{\phi_1(x), \ldots, \phi_m(x)\}: set of basis functions (or features)

\[\phi_i(x): \mathbb{R}^d \rightarrow \mathbb{R} \]
Basis functions: examples

- **Linear**

 If \(m = d \), \(\phi_i(x) = x_i, \ i = 1, \ldots, d \), then
 \[
 f(x; w) = w_0 + w_1 x_1 + \ldots + w_d x_d
 \]

- **Polynomial (univariate)**

 If \(\phi_i(x) = x^i, \ i = 1, \ldots, m \), then
 \[
 f(x; w) = w_0 + w_1 x + \ldots + w_{m-1} x^{m-1} + w_m x^m
 \]
Basis functions: examples

- **Gaussian**: $\phi_j(x) = \exp\left\{-\frac{(x-c_j)^2}{2\sigma_j^2}\right\}$

- **Sigmoid**: $\phi_j(x) = \sigma\left(\frac{\|x-c_j\|}{\sigma_j}\right)$, $\sigma(a) = \frac{1}{1+\exp(-a)}$
Radial Basis Functions: prototypes

- Predictions based on similarity to “prototypes”:

\[\phi_j(x) = \exp \left\{ -\frac{1}{2\sigma_j^2} \|x - c_j\|^2 \right\} \]

- Measuring the similarity to the prototypes \(c_1, \ldots, c_m\)
 - \(\sigma^2\) controls how quickly it vanishes as a function of the distance to the prototype.
 - Training examples themselves could serve as prototypes
Generalized linear: optimization

\[J(w) = \sum_{i=1}^{n} \left(y^{(i)} - f(x^{(i)}; w) \right)^2 \]

\[= \sum_{i=1}^{n} \left(y^{(i)} - w^T \phi(x^{(i)}) \right)^2 \]

\[
\begin{bmatrix}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{bmatrix} = \begin{bmatrix}
1 & \phi_1(x^{(1)}) & \cdots & \phi_m(x^{(1)}) \\
1 & \phi_1(x^{(2)}) & \cdots & \phi_m(x^{(2)}) \\
\vdots & \vdots & \ddots & \vdots \\
1 & \phi_1(x^{(n)}) & \cdots & \phi_m(x^{(n)})
\end{bmatrix} \begin{bmatrix}
w_0 \\
w_1 \\
\vdots \\
w_m
\end{bmatrix}
\]

\[
\hat{w} = \left(\Phi^T \Phi \right)^{-1} \Phi^T y
\]
Model complexity and overfitting

- With limited training data, models may achieve zero training error but a large test error.

\[
\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f\left(x^{(i)}; \theta \right) \right)^2 \approx 0
\]

- Over-fitting: when the training loss no longer bears any relation to the test (generalization) loss.
 - Fails to generalize to unseen examples.
Polynomial regression

\[
m = 0 \\
m = 1 \\
m = 3 \\
m = 9
\]

[Bishop]
Polynomial regression: training and test error

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; \theta))^2}{n}}
\]

[Bishop]
Over-fitting causes

- Model complexity
 - E.g., Model with a large number of parameters (degrees of freedom)

- Low number of training data
 - Small data size compared to the complexity of the model
Model complexity

- Example:
 - Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.
Number of training data & overfitting

- Over-fitting problem becomes less severe as the size of training data increases.

\[m = 9 \quad n = 15 \]

\[m = 9 \quad n = 100 \]

[Bishop]
How to evaluate the learner’s performance?

- Generalization error: true (or expected) error that we would like to optimize

- Two ways to assess the generalization error is:
 - Practical: Use a separate data set to test the model
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between training and expected errors
Evaluation and model selection

- **Evaluation:**
 - We need to measure how well the learned function can predicts the target for unseen examples

- **Model selection:**
 - Most of the time we need to select among a set of models
 - Example: polynomials with different degree m
 - and thus we need to evaluate these models first
Avoiding over-fitting

- Determine a suitable value for model complexity
 - Simple hold-out method
 - Cross-validation

- Regularization (Occam’s Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity in the objective function

- Bayesian approach
Simple hold-out: model selection

- Steps:
 - Divide training data into training and validation set v_{set}
 - Use only the training set to train a set of models
 - Evaluate each learned model on the validation set
 $$ J_v(w) = \frac{1}{|v_{set}|} \sum_{i \in v_{set}} (y^{(i)} - f(x^{(i)}; w))^2 $$
 - Choose the best model based on the validation set error

- Usually, too wasteful of valuable training data
 - Training data may be limited.
 - On the other hand, small validation set give a relatively noisy estimate of performance.
Simple hold out: training, validation, and test sets

- Simple hold-out chooses the model that minimizes error on validation set.

- $J_v(\hat{w})$ is likely to be an optimistic estimate of generalization error.
 - extra parameter (e.g., degree of polynomial) is fit to this set.

- Estimate generalization error for the test set
 - performance of the selected model is finally evaluated on the test set
Cross-Validation (CV): Evaluation

- \(k \)-fold cross-validation steps:
 - Shuffle the dataset and randomly partition training data into \(k \) groups of approximately equal size
 - for \(i = 1 \) to \(k \)
 - Choose the \(i \)-th group as the held-out validation group
 - Train the model on all but the \(i \)-th group of data
 - Evaluate the model on the held-out group
 - Performance scores of the model from \(k \) runs are **averaged**.
 - The average error rate can be considered as an estimation of the true performance.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{First run} & & & & \\
\hline
\text{Second run} & & & & \\
\hline
\text{(k-1)th run} & & & & \\
\hline
\text{k-th run} & & & & \\
\hline
\end{array}
\]
Cross-Validation (CV): Model Selection

- For each model we first find the average error found by CV.

- The model with the best average performance is selected.
Cross-validation: polynomial regression example

- 5-fold CV
- 100 runs
 - average

$m = 1$
CV: $MSE = 0.30$

$m = 3$
CV: $MSE = 1.45$

$m = 5$
CV: $MSE = 45.44$

$m = 7$
CV: $MSE = 31759$
Leave-One-Out Cross Validation (LOOCV)

- When data is particularly scarce, cross-validation with $k = N$
 - Leave-one-out treats each training sample in turn as a test example and all other samples as the training set.

- Use for small datasets
 - When training data is valuable
 - LOOCV can be time expensive as N training steps are required.
Regularization

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.

- Ridge regression (weight decay):

\[
J(w) = \sum_{i=1}^{n} \left(y^{(i)} - w^T \phi(x^{(i)}) \right)^2 + \lambda w^T w
\]

\[
\hat{w} = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y
\]
Polynomial order

- Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.
- magnitude of the coefficients typically gets larger by increasing m.

<table>
<thead>
<tr>
<th></th>
<th>$M = 0$</th>
<th>$M = 1$</th>
<th>$M = 6$</th>
<th>$M = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_0^*</td>
<td>0.19</td>
<td>0.82</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>w_1^*</td>
<td>-1.27</td>
<td>7.99</td>
<td>232.37</td>
<td></td>
</tr>
<tr>
<td>w_2^*</td>
<td>-25.43</td>
<td>-5321.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_3^*</td>
<td>17.37</td>
<td>48568.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_4^*</td>
<td>-231639.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_5^*</td>
<td>640042.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_6^*</td>
<td>-1061800.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_7^*</td>
<td>1042400.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_8^*</td>
<td>-557682.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_9^*</td>
<td>125201.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Bishop]
Regularization parameter

\[
m = 9
\]

<table>
<thead>
<tr>
<th></th>
<th>(\ln \lambda = -\infty)</th>
<th>(\ln \lambda = -18)</th>
<th>(\ln \lambda = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{w}_0)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>(\hat{w}_1)</td>
<td>232.37</td>
<td>4.74</td>
<td>-0.05</td>
</tr>
<tr>
<td>(\hat{w}_2)</td>
<td>-5321.83</td>
<td>-0.77</td>
<td>-0.06</td>
</tr>
<tr>
<td>(\hat{w}_3)</td>
<td>48568.31</td>
<td>-31.97</td>
<td>-0.05</td>
</tr>
<tr>
<td>(\hat{w}_4)</td>
<td>-231639.30</td>
<td>-3.89</td>
<td>-0.03</td>
</tr>
<tr>
<td>(\hat{w}_5)</td>
<td>640042.26</td>
<td>55.28</td>
<td>-0.02</td>
</tr>
<tr>
<td>(\hat{w}_6)</td>
<td>-1061800.52</td>
<td>41.32</td>
<td>-0.01</td>
</tr>
<tr>
<td>(\hat{w}_7)</td>
<td>1042400.18</td>
<td>-45.95</td>
<td>-0.00</td>
</tr>
<tr>
<td>(\hat{w}_8)</td>
<td>-557682.99</td>
<td>-91.53</td>
<td>0.00</td>
</tr>
<tr>
<td>(\hat{w}_9)</td>
<td>125201.43</td>
<td>72.68</td>
<td>0.01</td>
</tr>
</tbody>
</table>

[Bishop]
Regularization parameter

- **Generalization**
 - λ now controls the effective complexity of the model and hence determines the degree of over-fitting

![Graph showing the relationship between $\ln \lambda$ and E_{RMS} for training and test data.](image)
Choosing the regularization parameter

- A set of models with different values of λ.

- Find \hat{w} for each model based on training data.

- Find $J_v(\hat{w})$ (or $J_{cv}(\hat{w})$) for each model
 \[J_v(w) = \frac{1}{n_v} \sum_{i \in v \text{-set}} \left(y^{(i)} - f(x^{(i)}; w) \right)^2 \]

- Select the model with the best $J_v(\hat{w})$ (or $J_{cv}(\hat{w})$)
The approximation-generalization trade-off

- Small true error shows good approximation of f out of sample

- More complex $\mathcal{H} \Rightarrow$ better chance of approximating f

- Less complex $\mathcal{H} \Rightarrow$ better chance of generalization out of f
Complexity of Hypothesis Space: Example

This example has been adapted from: Prof. Andrew Ng’s slides
Complexity of Hypothesis Space: Example

This example has been adapted from: Prof. Andrew Ng’s slides
Complexity of Hypothesis Space: Example

\[
J_v(w) = \frac{1}{n_v} \sum_{i \in \text{eval_set}} \left(y^{(i)} - f(x^{(i)}; w)\right)^2
\]

\[
J_{\text{train}}(w) = \frac{1}{n_{\text{train}}} \sum_{i \in \text{train_set}} \left(y^{(i)} - f(x^{(i)}; w)\right)^2
\]
Complexity of Hypothesis Space

- **Less complex \(\mathcal{H} \):**
 \[
 J_{\text{train}}(\hat{w}) \approx J_v(\hat{w}) \quad \text{and} \quad J_{\text{train}}(\hat{w}) \text{ is very high}
 \]

- **More complex \(\mathcal{H} \):**
 \[
 J_{\text{train}}(\hat{w}) \ll J_v(\hat{w}) \quad \text{and} \quad J_{\text{train}}(\hat{w}) \text{ is low}
 \]
Size of training set

\[J_v(w) = \frac{1}{n_v} \sum_{i \in \text{val set}} \left(y^{(i)} - f(x^{(i)}; w) \right)^2 \]

\[J_{\text{train}}(w) = \frac{1}{n_{\text{train}}} \sum_{i \in \text{train set}} \left(y^{(i)} - f(x^{(i)}; w) \right)^2 \]

\[f(x; w) = w_0 + w_1 x + w_2 x^2 \]
If model is very simple, getting more training data will not (by itself) help much.
More complex \mathcal{H}

For more complex models, getting more training data is usually helps.

$$f(x; w) = w_0 + w_1 x + \cdots w_{10} x^{10}$$

This slide has been adapted from: Prof. Andrew Ng’s slides
Regularization: Example

\[f(x; \mathbf{w}) = w_0 + w_1x + w_2x^2 + w_3x^3 + w_4x^4 \]

\[J(\mathbf{w}) = \frac{1}{n} \left(\sum_{i=1}^{n} \left(y^{(i)} - f(x^{(i)}; \mathbf{w}) \right)^2 + \lambda \mathbf{w}^T \mathbf{w} \right) \]

Large \(\lambda \) (Prefer to more simple models)

\[w_1 = w_2 \approx 0 \]

Intermediate \(\lambda \)

Small \(\lambda \) (Prefer to more complex models)

\(\lambda = 0 \)

This example has been adapted from: Prof. Andrew Ng’s slides
Model complexity: Bias-variance trade-off

- Least squares, can lead to severe over-fitting if complex models are trained using data sets of limited size.

- A frequentist viewpoint of the model complexity issue, known as the *bias-variance trade-off*.
Formal discussion on bias, variance, and noise

- Best unrestricted regression function
- Noise
- Bias and variance
The learning diagram: deterministic target

- **UNKNOWN TARGET FUNCTION**
 \[h: x \rightarrow y \]

- **TRAINING EXAMPLES**
 \[(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)}) \]

- **LEARNING ALGORITHM**
 \[A \]

- **HYPOTHESIS SET**
 \[\mathcal{H} \]

- **FINAL HYPOTHESIS**
 \[f: x \rightarrow y \]

- **PROBABILITY DISTRIBUTION**
 \[P \text{ on } X \]

[Y.S. Abou Mostafa, et al]
The learning diagram including noisy target

- **Type**

 - **Unknown Target Distribution**
 \[P(y \mid x) \]
 Target function \(h: X \rightarrow Y \) plus noise

 - **Training Examples**
 \((x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)}) \)

 - **Learning Algorithm**

 - **Final Hypothesis**
 \(f: X \rightarrow Y \)

 - **Hypothesis Set**
 \(\mathcal{H} \)

\[P(x, y) = P(x)P(y \mid x) \]

Distribution on features

Target distribution

[Y.S. Abou Mostafa, et al]
Best unrestricted regression function

- If we know the joint distribution $P(x, y)$ and no constraints on the regression function?
 - cost function: mean squared error

\[h^* = \arg\min_{h: \mathbb{R}^d \to \mathbb{R}} \mathbb{E}_{x,y} \left[(y - h(x))^2 \right] \]

\[h^*(x) = \mathbb{E}_{y|x}[y] \]
Best unrestricted regression function: Proof

\[\mathbb{E}_{x,y} \left[(y - h(x))^2 \right] = \int \int (y - h(x))^2 p(x, y) dx dy \]

- For each \(x \) separately minimize loss since \(h(x) \) can be chosen independently for each different \(x \):

\[
\delta \mathbb{E}_{x,y} \left[(y - h(x))^2 \right] \over \delta h(x) = \int 2(y - h(x))p(x, y)dy = 0
\]

\[\Rightarrow h(x) = \frac{\int y p(x, y)dy}{\int p(x, y)dy} = \frac{\int y p(x, y)dy}{p(x)} = \int y p(y|x)dy = \mathbb{E}_{y|x}[y] \]

\[\Rightarrow h^*(x) = \mathbb{E}_{y|x}[y] \]
Error decomposition

\(E_{true}(f_D(x)) = \mathbb{E}_{x,y}[(f_D(x) - y)^2] \)

\(= \mathbb{E}_{x,y}[(f_D(x) - h(x) + h(x) - y)^2] \)

\(= \mathbb{E}_x[(f_D(x) - h(x))^2] + \mathbb{E}_{x,y}[(h(x) - y)^2] \\
+ 2\mathbb{E}_{x,y}[(f_D(x) - h(x))(h(x) - y)] \\
= \mathbb{E}_x[(f_D(x) - h(x))^2] \mathbb{E}_{y|x}[(h(x) - y)] \\
0 \)

\((x, y) \sim P \)

\(h(x) : \text{minimizes the expected loss} \)
Error decomposition

\[E_{\text{true}}(f_D(x)) = \mathbb{E}_{x,y}[(f_D(x) - y)^2] \]

\[= \mathbb{E}_{x,y}[(f_D(x) - h(x) + h(x) - y)^2] \]

\[= \mathbb{E}_x[(f_D(x) - h(x))^2] + \mathbb{E}_{x,y}[(h(x) - y)^2] + 0 \]

Noise shows the irreducible minimum value of the loss function

\((x, y) \sim P\)

\(h(x)\) : minimizes the expected loss
Expectation of true error

\[E_{\text{true}}(f_{\mathcal{D}}(x)) = \mathbb{E}_{x,y}[(f_{\mathcal{D}}(x) - y)^2] \]

\[= \mathbb{E}_x [(f_{\mathcal{D}}(x) - h(x))^2] + \text{noise} \]

\[\mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_x [(f_{\mathcal{D}}(x) - h(x))^2] \right] \]

\[= \mathbb{E}_x \left[\mathbb{E}_{\mathcal{D}} [(f_{\mathcal{D}}(x) - h(x))^2] \right] \]

We now want to focus on \(\mathbb{E}_{\mathcal{D}} [(f_{\mathcal{D}}(x) - h(x))^2] \).
The average hypothesis

\[\bar{f}(x) \equiv E_D[f_D(x)] \]

\[\bar{f}(x) \approx \frac{1}{K} \sum_{k=1}^{K} f_{D(k)}(x) \]

\(K \) training sets (of size \(N \)) sampled from \(P(x, y) \):
\(D^{(1)}, D^{(2)}, ..., D^{(K)} \)
Using the average hypothesis

\[\mathbb{E}_D \left[(f_D(x) - h(x))^2 \right] \]
\[= \mathbb{E}_D \left[(f_D(x) - \bar{f}(x) + \bar{f}(x) - h(x))^2 \right] \]
\[= \mathbb{E}_D \left[(f_D(x) - \bar{f}(x))^2 + (\bar{f}(x) - h(x))^2 \right] \]
Bias and variance

\[
\mathbb{E}_D \left[(f_D(x) - h(x))^2 \right] = \mathbb{E}_D \left[(f_D(x) - \bar{f}(x))^2 \right] + (\bar{f}(x) - h(x))^2
\]

\[
\mathbb{E}_x \left[\mathbb{E}_D \left[(f_D(x) - h(x))^2 \right] \right] = \mathbb{E}_x [\text{var}(x) + \text{bias}(x)] \\
= \text{var} + \text{bias}
\]
Bias-variance trade-off

\[\text{var} = \mathbb{E}_x \left[\mathbb{E}_D \left[(f_D(x) - \bar{f}(x))^2 \right] \right] \]

\[\text{bias} = \mathbb{E}_x [\bar{f}(x) - h(x)] \]

More complex \(\mathcal{H} \Rightarrow \) lower bias but higher variance

[Y.S. Abou Mostafa, et. al]
Example: sin target

- Only two training example $N = 2$

- Two models used for learning:
 - $\mathcal{H}_0: f(x) = b$
 - $\mathcal{H}_1: f(x) = ax + b$

- Which is better \mathcal{H}_0 or \mathcal{H}_1?
Learning from a training set

\mathcal{H}_0

\mathcal{H}_1

[Y.S. Abou Mostafa, et al.]
Variance \mathcal{H}_0
Variance \mathcal{H}_1

\[f(x) \]

$\sin(x)$

$\bar{f}(x)$

[Y.S. Abou Mostafa, et. al]
Which is better?

\mathcal{H}_0

$\sin(x)$

$\bar{f}(x)$

bias = 0.50 var = 0.25

\mathcal{H}_1

$\sin(x)$

$\bar{f}(x)$

bias = 0.21 var = 1.69

[Y.S. Abou Mostafa, et al]
Lesson

Match the model complexity to the data sources not to the complexity of the target function.
Expected training and true error curves

- Errors vary with the number of training samples

Simple Model

- Expected true error: \(\mathbb{E}_D[E_{true}(f_D(x))] \)
- Expected training error: \(\mathbb{E}_D[E_{train}(f_D(x))] \)

Complex Model

- Expected true error: \(\mathbb{E}_D[E_{true}(f_D(x))] \)
- Expected training error: \(\mathbb{E}_D[E_{train}(f_D(x))] \)

[Y.S. Abou Mostafa, et. al]
Regularization

[Y.S. Abou Mostafa, et. al]
Regularization: bias and variance

\[f(x) \]

without regularization

\[\bar{f}(x) \sin(\pi x) \]

bias = 0.21 \hspace{1cm} var = 1.69

with regularization

\[\bar{f}(x) \sin(\pi x) \]

bias = 0.23 \hspace{1cm} var = 0.33

[Y.S. Abou Mostafa, et. al]
Winner of \mathcal{H}_0, \mathcal{H}_1, and \mathcal{H}_1 with regularization

\mathcal{H}_0

\mathcal{H}_1

\mathcal{H}_1 with regularization

$\sin(x)$

$\sin(x)$

$\sin(\pi x)$

$\hat{f}(x)$

$\hat{f}(x)$

$\hat{f}(x)$

bias = 0.50 var = 0.25

bias = 0.21 var = 1.69

bias = 0.23 var = 0.33

[Y.S. Abou Mostafa, et. al]
Regularization and bias/variance

\[\lambda \text{ is large} \]

\[L = 100 \text{ data sets} \]
\[n = 25 \]
\[m = 25 \]

\[\lambda \text{ is intermediate} \]

\[\ln \lambda = -0.31 \]

\[\lambda \text{ is small} \]

\[\ln \lambda = -2.4 \]
Learning curves of bias, variance, and noise
Bias-variance decomposition: summary

- The noise term is unavoidable.
- The terms we are interested in are bias and variance.
- The approximation-generalization trade-off is seen in the bias-variance decomposition.
Resources

- C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 1.1, 1.3, 3.1, 3.2.