
Reinforcement Learning (RL)
CE-717: Machine Learning
Sharif University of Technology

M. Soleymani

Fall 2016

Reinforcement Learning (RL)

2

 Learning as a result of interaction with an environment

 to improve the agent’s ability to behave optimally in the future

to achieve the goal.

 The first idea when we think about the nature of learning

 Examples:

 Baby movements

 Learning to drive car

 Environment’s response affects our subsequent actions

 We find out the effects of our actions later

Paradigms of learning

3

 Supervised learning

 Training data: features and labels for 𝑁 samples 𝒙 𝑛 , 𝑦(𝑛)
𝑛=1

𝑁

 Unsupervised learning

 Training data: only features for 𝑁 samples 𝒙 𝑛
𝑛=1

𝑁

 Reinforcement learning

 Training data: a sequence of (s, a, r)

 (state, action, reward)

 Agent acts on its environment, it receives some evaluation of its

action via reinforcement signal

 it is not told of which action is the correct one to achieve its goal

Reinforcement Learning (RL)

4

 𝑆: Set of states

 𝐴: Set of actions

 Goal: Learning an optimal policy (mapping from states to actions) in

order to maximize its long-term reward

 The agent's objective is to maximize amount of reward it receives over time.

Environment properties

5

 Deterministic vs. stochastic

 Stochastic: stochastic reward & transition

 Known vs. unknown

 Unknown: Agent doesn't know the precise results of its actions
before doing them

 Fully observable vs. partially observable

 Observable (accessible): percept identifies the state

 Partially observable: Agent doesn't necessarily know all about
the current state

 [We discuss about only fully observable environments.]

Reinforcement Learning: Example

6

 Chess game (deterministic game)

 Learning task: chose move at arbitrary board states

 Training signal: final win or loss

 Training: e.g., played n games against itself

Non-deterministic world: Example

7

 What is the policy to achieve max reward?

[Russel, AIMA,2010]

Other action

reward: -0.04

Main characteristics and applications of RL

8

 Main characteristics of RL

 Learning is a multistage decision making process

 Actions influence later perceptions (inputs)

 Delayed reward: actions may affect not only the immediate reward but

also subsequent rewards

 agent must learn from interactions with environment

 Agent must be able to learn from its own experience

 Not entirely supervised, but interactive

 by trial-and-error

 Opportunity for active exploration

 Needs trade-off between exploration and exploitation

Popular applications

9

 Robotics and control

 Game playing

Main elements of RL

11

 A policy

 A map from state space to action space.

 May be stochastic.

 A reward function

 It maps each state (or, state-action pair) to a real number,

called reward.

 A value function

 Value of a state (or state-action) is the total expected reward,

starting from that state (or state-action).

RL deterministic world: Example

12

 Example: Robot grid world

 Deterministic and known reward and transitions

Optimal policy

13

𝑟 = −0.04 for other actions

𝑟 = −4 for other actions 𝑟 = −0.4 for other actions

RL problem: deterministic environment

14

 Deterministic

 Transition and reward functions

 At time 𝑡:

 Agent observes state 𝑠𝑡 ∈ 𝑆

 Then chooses action 𝑎𝑡 ∈ 𝐴

 Then receives reward 𝑟𝑡, and state changes to 𝑠𝑡+1

 Learn to choose action 𝑎𝑡 in state 𝑠𝑡 that maximizes the

discounted return:

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ =
𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘 , 0 < 𝛾 ≤ 1

Upon visiting the sequence of states st, st+1, … with actions at, at+1, … it

shows the total payoff

RL problem: stochastic environment

15

 Stochastic environment

 Stochastic transition and/or reward function

 Learn to choose a policy that maximizes the expected
discounted return:

starting from state 𝑠𝑡

𝐸 𝑅𝑡 = 𝐸 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ =

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

Markov Decision Process (RL Setting)

16

 We encounter a multistage decision making process.

 Markov assumption:

𝑃 𝑠𝑡+1, 𝑟𝑡 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡−1, 𝑠𝑡−1, 𝑎𝑡−1, , 𝑟𝑡−2, …) = 𝑃(𝑠𝑡+1, 𝑟𝑡|𝑠𝑡 , 𝑎𝑡)

 Markov property: Transition probabilities depend on state only,
not on the path to the state.

 Goal: for every possible state 𝑠∈𝑆 learn a policy 𝜋 for
choosing actions that maximizes

𝐸 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯|𝑠𝑡 = 𝑠, 𝜋 , 0 < 𝛾 ≤ 1

17

MDP: Recycling Robot example

18

 𝑆 = ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤

 𝐴 = 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑤𝑎𝑖𝑡, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒
 𝒜 ℎ𝑖𝑔ℎ = 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑤𝑎𝑖𝑡

 𝒜 𝑙𝑜𝑤 = 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑤𝑎𝑖𝑡, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒

 ℛ𝑠𝑒𝑎𝑟𝑐ℎ > ℛ𝑤𝑎𝑖𝑡

Available actions in the ‘high’ state

𝑃(𝑠𝑡+1 = ℎ𝑖𝑔ℎ|𝑠𝑡 = ℎ𝑖𝑔ℎ, 𝑎𝑡 = 𝑠𝑒𝑎𝑟𝑐ℎ)

reward

RL: Autonomous Agent

19

 Execute actions in environment, observe results, and learn

 Learn (perhaps stochastic) policy that maximizes

𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠, 𝜋 for every state 𝑠 ∈ 𝑆

 Function to be learned is the policy 𝜋: 𝑆 × 𝐴 → [0,1]
(when the policy is deterministic 𝜋: 𝑆 → 𝐴)

 Training examples in supervised learning: 𝑠, 𝑎 pairs

 RL training data shows the amount of reward for a pair 𝑠, 𝑎 .

 training data are of the form 𝑠, 𝑎 , 𝑟

State-value function for policy 𝜋

20

 Given a policy 𝜋, define value function

𝑉𝜋 𝑠 = 𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘 𝑠𝑡 = 𝑠, 𝜋

 𝑉𝜋 𝑠 : How good for the agent to be in the state 𝑠 when

its policy is 𝜋

 It is simply the expected sum of discounted rewards upon

starting in state s and taking actions according to 𝜋

Approaches to solve RL problems

21

 Three fundamental classes of methods for solving the RL

problems:

 Dynamic programming

 Monte Carlo methods

 Temporal-difference learning

 Main approaches

 Value iteration and Policy iteration are two more classic

approaches to this problem.

 They are dynamic programming approaches

 Q-learning is a more recent approaches to this problem.

 It is a temporal-difference method.

Recursive definition for 𝑉𝜋(𝑆)

22

𝑉𝜋 𝑠 = 𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘 𝑠𝑡 = 𝑠, 𝜋

= 𝐸 𝑟𝑡 + 𝛾 𝑘=1
∞ 𝛾𝑘−1𝑟𝑡+𝑘 𝑠𝑡 = 𝑠, 𝜋

= 𝐸 𝑟𝑡 + 𝛾 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1 𝑠𝑡 = 𝑠, 𝜋

=

𝑎

𝜋(𝑠, 𝑎)

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1 𝑠𝑡+1 = 𝑠′, 𝜋

𝑉𝜋(𝑠′)

Bellman

Equations

𝒫𝑠𝑠′
𝑎 = 𝑃 𝑠𝑡+1 = 𝑠′ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

ℛ𝑠𝑠′
𝑎 = 𝐸 𝑟𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′

𝑉𝜋 𝑠 =

𝑎

𝜋(𝑠, 𝑎)

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

Base equation for dynamic programming approaches

State-action value function for policy 𝜋

23

𝑄𝜋 𝑠, 𝑎 = 𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋

=

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝐸 𝑘=0
∞ 𝛾𝑘𝑟𝑡+𝑘+1 𝑠𝑡+1 = 𝑠′, 𝜋

𝑉𝜋(𝑠′)

𝑄𝜋 𝑠, 𝑎 =

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

State-value function for policy 𝜋: example

24

 Deterministic example

𝑉𝜋 𝑠 =
𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

90

8173

66 100

𝑠𝑡 = 𝑠

Grid-world: value function example

25

Optimal policy

26

 Policy 𝜋 is better than (or equal to) 𝜋′ (i.e. 𝜋 ≥ 𝜋′) iff

𝑉𝜋 𝑠 ≥ 𝑉𝜋′
𝑠 , ∀𝑠 ∈ 𝑆

 Optimal policy 𝜋∗ is better than (or equal to) all other

policies (∀𝜋, 𝜋∗ ≥ 𝜋)

 Optimal policy 𝛑∗:

𝜋∗ 𝑠 = argmax
𝜋

𝑉𝜋 𝑠 , ∀𝑠 ∈ 𝑆

MDP: Optimal policy

state-value and action-value functions

27

 Optimal policies share the same optimal state-value

function (𝑉𝜋∗
(𝑠) will be abbreviated as 𝑉∗(𝑠)):

𝑉∗ 𝑠 = max
𝜋

𝑉𝜋 𝑠 , ∀𝑠 ∈ 𝑆

 And the same optimal action-value function:

𝑄∗ 𝑠, 𝑎 = max
𝜋

𝑄𝜋 𝑠, 𝑎 , ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝒜(𝑠)

 For any MDP, a deterministic optimal policy exists!

Optimal policy

28

 If we have 𝑉∗(𝑠) and 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) we can compute 𝜋∗(𝑠)

𝜋∗ 𝑠 = argmax
𝑎

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉∗(𝑠′)

 It can also be computed as:

𝜋∗ 𝑠 = argmax
𝑎∈𝒜(𝑠)

𝑄∗ 𝑠, 𝑎

 Optimal policy has the interesting property that it is the

optimal policy for all states.

 Share the same optimal state-value function

 It is not dependent on the initial state.

 use the same policy no matter what the initial state of MDP is

State-value function for policy 𝜋∗: example

29

 Deterministic example

90

10090

81 100

Bellman optimality equation

30

𝑉∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉∗ 𝑠′

𝑄∗ 𝑠, 𝑎 =

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾max
𝑎′

𝑄∗ 𝑠′, 𝑎′

𝑉∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑄∗ 𝑠, 𝑎

𝑄∗ 𝑠, 𝑎 =

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉∗ 𝑠′

Optimal policy: example 1 (deterministic env.)

31

RL algorithms

32

 Model-based (passive)

 Known environment model (transition and reward

probabilities)

 Value iteration and policy iteration algorithms

 Model-free (active)

 Unknown environment model

First, we introduce the model-based algorithms

Value Iteration algorithm

33

1) Initialize 𝑉(𝑠) arbitrarily

2) Repeat until convergence

 for 𝑠 ∈ 𝑆

 𝑉(𝑠) ← max
𝑎

 𝑠′ 𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉(𝑠′)

𝑉(𝑠) converges to 𝑉∗(𝑠)

Asynchronous: Instead of updating values for all states at once in each iteration,

it can update them state by state, or more often to some states than others.

Consider only MDPs with finite state and action spaces:

Value Iteration

34

 Value iteration works even if we randomly traverse the

environment instead of looping through each state and action

(update asynchronously)

 but we must still visit each state infinitely often

 If max
𝑠∈𝑆

𝑉𝑜𝑙𝑑 𝑠 − 𝑉(𝑠) < 𝜖 , then the value of the greedy

policy differs from the optimal policy by no more than
2𝜖𝛾

1−𝛾

 Value Iteration

 It is time and memory expensive

Convergence

35

[Russel, AIMA, 2010]

Main steps in solving Bellman optimality

equations

36

 Two kinds of steps, which are repeated in some order for all

the states until no further changes take place

𝜋 𝑠 = argmax
𝑎

𝑠′

𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 =

𝑠′

𝒫
𝑠𝑠′
𝜋(𝑠)

ℛ
𝑠𝑠′
𝜋(𝑠)

+ 𝛾𝑉𝜋(𝑠′)

Policy Iteration algorithm

37

1) Initialize 𝜋(𝑠) arbitrarily

2) Repeat until convergence

 Compute the value function for the current policy 𝜋 (𝑉𝜋)

 𝑉 ← 𝑉𝜋

 for 𝑠 ∈ 𝑆

 𝜋(𝑠) ← argmax
𝑎

 𝑠′ 𝒫𝑠𝑠′
𝑎 ℛ𝑠𝑠′

𝑎 + 𝛾𝑉(𝑠′)

𝜋(𝑠) converges to 𝜋∗(𝑠)

updates the policy (greedily) using the

current value function.

When to stop iterations:

38 [Russel, AIMA 2010]

Unknown transition model

39

 So far: learning optimal policy when we know 𝒫𝑠𝑠′
𝑎

and

ℛ𝑠𝑠′
𝑎

 it requires prior knowledge of the environment's dynamics

 If a model is not available, then it is particularly useful to

estimate action values rather than state values

Unknown transition model: action value

40

 With a model, state values alone are sufficient to
determine a policy

 simply look ahead one step and chooses whichever action
leads to the best combination of reward and next state

𝜋∗ 𝑠 = argmax
𝑎∈𝒜(𝑠)

𝑠′

𝒫𝑠𝑠′
𝑎

ℛ𝑠𝑠′
𝑎

+ 𝛾𝑉∗ 𝑠′

 Without a model, state values alone are not sufficient.

 However, if agent knows 𝑄(𝑠, 𝑎), it can choose optimal

action without knowing 𝒫𝑠𝑠′
𝑎 and ℛ𝑠𝑠′

𝑎
:

𝜋∗ 𝑠 = argmax
𝑎

𝑄(𝑠, 𝑎)

Monte Carlo methods

41

 do not assume complete knowledge of the environment

 require only experience

 sample sequences of states, actions, and rewards from on-line

or simulated interaction with an environment

 are based on averaging sample returns

 are defined for episodic tasks

A Monte Carlo control algorithm

using exploring starts

42

1) Initialize 𝑄 and 𝜋 arbitrarily and 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 to empty lists

2) Repeat

 Generate an episode using 𝜋 and exploring starts

 for each pair of 𝑠 and 𝑎 appearing in the episode

 𝑅 ←return following the first occurrence of 𝑠, 𝑎

 Append 𝑅 to 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑠, 𝑎)

 𝑄 𝑠, 𝑎 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑠, 𝑎)

for each 𝑠 in the episode

 𝜋(𝑠) ← argmax
𝑎

𝑄(𝑠, 𝑎)

A Monte Carlo control algorithm

43

1) Initialize 𝑄 and 𝜋 arbitrarily and 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 to empty lists

2) Repeat

 Generate an episode using 𝜋

 for each pair of 𝑠 and 𝑎 appearing in the episode

 𝑅 ←return following the first occurrence of 𝑠, 𝑎

 Append 𝑅 to 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑠, 𝑎)

 𝑄 𝑠, 𝑎 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑠, 𝑎)

for each 𝑠 in the episode

 𝑎∗ ← argmax
𝑎

𝑄(𝑠, 𝑎)

 𝜋 𝑠, 𝑎 =
1 − 𝜖 +

𝜖

𝒜 𝑠
𝑎 = 𝑎∗

𝜖

𝒜 𝑠
𝑎 ≠ 𝑎∗

Temporal difference methods

44

 TD learning is a combination of MC and DP ideas.

 Like MC methods, can learn directly from raw experience

without a model of the environment's dynamics.

 Like DP, update estimates based in part on other learned

estimates, without waiting for a final outcome.

Temporal difference on value function

45

 𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉(𝑠𝑡)

1) Initialize 𝑉(𝑠) arbitrarily

2) Repeat (for each episode)

 Initialize s

 𝑎 ←action given by policy 𝜋 for 𝑠

 Take action 𝑎; observe reward 𝑟, and next state 𝑠′

 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑟 + 𝛾𝑉 𝑠′ − 𝑉(𝑠)

 until s is terminal

𝜋: the policy to be evaluated

fully incremental fashion

Q-learning

46

 Update rule for doing action 𝑎 in state 𝑠 and achieving reward 𝑟:

 𝑄𝑛 𝑠, 𝑎 = 𝑄𝑛−1 𝑠, 𝑎 + 𝛼𝑛 𝑟 + 𝛾max
𝑎′

 𝑄𝑛−1 𝑠′, 𝑎′ − 𝑄𝑛−1 𝑠, 𝑎

 We can prove convergence of 𝑄 to 𝑄 (under certain assumptions)

 lim
𝑛→∞

 𝑄𝑛 𝑠, 𝑎 = 𝑄∗ 𝑠, 𝑎 , ∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴

 𝑄 𝑠,𝑎 after 𝑛-th

visit of 𝑠,𝑎

Q-learning algorithm:

Non-deterministic environments

47

 Initialize 𝑄(𝑠, 𝑎) arbitrarily

 Repeat (for each episode):

 Initialize 𝑠

 Repeat (for each step of episode):

 Choose 𝑎 from 𝑠 using a policy derived from 𝑄

 Take action 𝑎, receive reward 𝑟, observe new state 𝑠′

 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

 𝑠 ← 𝑠′

 until 𝑠 is terminal

e.g., greedy, ε-greedy

Exploration/exploitation tradeoff

48

 Exploitation: High rewards from trying previously-well-

rewarded actions

 Exploration:Which actions are best?

 Must try ones not tried before

Q-learning: Policy

49

 Greedy action selection:

𝜋 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎)

 𝜖-greedy: greedy most of the times, occasionally take a random
action

 Softmax policy: Give a higher probability to the actions that
currently have better utility, e.g,

𝜋 𝑠, 𝑎 =
𝑏 𝑄(𝑠,𝑎)

 𝑎′ 𝑏
 𝑄(𝑠,𝑎′)

 After learning 𝑄∗, the policy is greedy?

Q-learning convergence

50

 Q-learning converges to optimal Q-values if

 Every state is visited infinitely often

 The policy for action selection becomes greedy as time

approaches infinity

 The step size parameter is chosen appropriately

Step size parameter

51

 Stochastic approximation conditions

 The learning rate is decreased fast enough but not too fast

 One of choices for 𝛼𝑛

𝛼𝑛 =
1

𝑣𝑖𝑠𝑖𝑡𝑠𝑛(𝑠, 𝑎)

Tabular methods: Problem

52

 All of the introduced methods maintain a table

 Table size can be very large for complex environments

 We may not even visit some states

 But computation and memory problem

Function Approximation

 Use an approximate functional representation to generalize

over states.

 Instead of huge tables for 𝑉(𝑠) and 𝑄(𝑠, 𝑎), we approximate 𝑉(𝑠) and

𝑄(𝑠, 𝑎) with any supervised learning methods

𝑉𝜽 𝑠 = 𝜃1𝑓1 𝑠 + ⋯+ 𝜃𝑚𝑓𝑚 𝑠

or

𝑄𝜽 𝑠, 𝑎 = 𝜃1𝑓1 𝑠, 𝑎 + ⋯+ 𝜃𝑚𝑓𝑚 𝑠, 𝑎

 We can generalize from visited states to unvisited ones.

 In addition to the less space requirement

53

Adjusting function weights

54

Tesauro used function approximation in his Backgammon playing temporal

difference learning research.

TD-Gammon plays at level of best human players (learn through self play)

𝜽 ← 𝜽 + 𝛼 𝑟 + 𝛾 𝑉𝜽 𝑠′ − 𝑉𝜽 𝑠 𝛻𝜽
 𝑉𝜽(𝑠)

or

𝜽 ← 𝜽 + 𝛼 𝑟 + 𝛾max
𝑎′

 𝑄𝜽 𝑠′, 𝑎′ − 𝑄𝜽(𝑠, 𝑎) 𝛻𝜽
 𝑄𝜽(𝑠, 𝑎)

Applications

55

 Control & robotics

 Autonomous helicopter

 self-reliant agent must do to learn from its own experiences.

 eliminating hand coding of control strategies

 Board games

 Resource (time, memory, channel, …) allocation

References

56

 T. Mitchell, Machine Learning, MIT Press,1998. [Chapter 13]

 R.S. Sutton, A.G. Barto, Reinforcement Learning: An

Introduction, MIT Press, 1999 [Chapters 1,3,4,6].

