Probabilistic classification

CE-717: Machine Learning Sharif University of Technology

M. Soleymani Fall 2016

Topics

- Probabilistic approach
 - Bayes decision theory
 - Generative models
 - ▶ Gaussian Bayes classifier
 - Naïve Bayes
 - Discriminative models
 - Logistic regression

Classification problem: probabilistic view

Each feature as a random variable

Class label also as a random variable

- We observe the feature values for a random sample and we intend to find its class label
 - \triangleright Evidence: feature vector x
 - Query: class label

Definitions

- Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(C_k)$

```
p(x): pdf of feature vector x (p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k))
```

 $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k

 $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule

K=2

If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2

$$p(error|\mathbf{x}) = \begin{cases} p(C_2|\mathbf{x}) & \text{if we decide } C_1 \\ P(C_1|\mathbf{x}) & \text{if we decide } C_2 \end{cases}$$

If we use Bayes decision rule:

$$P(error|\mathbf{x}) = \min\{P(\mathcal{C}_1|\mathbf{x}), P(\mathcal{C}_2|\mathbf{x})\}\$$

Using Bayes rule, for each x, P(error|x) is as small as possible and thus this rule minimizes the probability of error

Optimal classifier

The optimal decision is the one that minimizes the expected number of mistakes

We show that Bayes classifier is an optimal classifier

Bayes decision rule Minimizing misclassification rate

▶ Decision regions: $\mathcal{R}_k = \{x | \alpha(x) = k\}$

K=2

All points in \mathcal{R}_k are assigned to class \mathcal{C}_k

$$p(error) = E_{x,y}[I(\alpha(x) \neq y)]$$

$$= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$$

$$= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) dx$$

$$= \int_{\mathcal{R}_1} p(\mathcal{C}_2|x)p(x) dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1|x)p(x) dx$$

Choose class with highest $p(\mathcal{C}_k|\mathbf{x})$ as $\alpha(\mathbf{x})$

Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

If we know the probabilities in advance then the above optimization problem will be solved easily.

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

In practice, we can estimate p(y|x) based on a set of training samples $\mathcal D$

Bayes theorem

Bayes' theorem

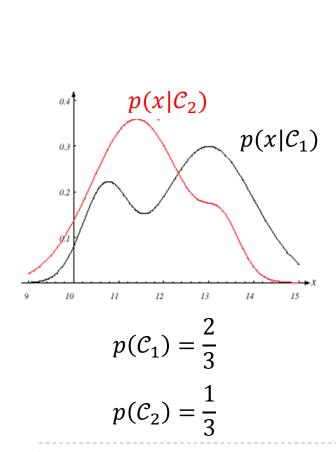
Posterior
$$\uparrow$$
 \uparrow \uparrow \uparrow $p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$

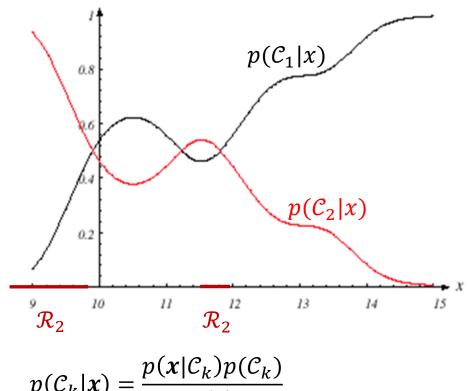
- ▶ Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(C_k)$

p(x): pdf of feature vector x ($p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$) $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule: example

b Bayes decision: Choose the class with highest $p(C_k|x)$





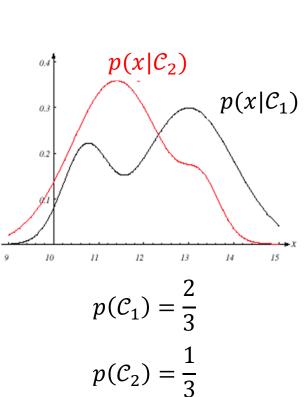
$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$
$$p(\mathbf{x}) = p(C_1)p(\mathbf{x}|C_1) + p(C_2)p(\mathbf{x}|C_2)$$

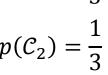
Bayesian decision rule

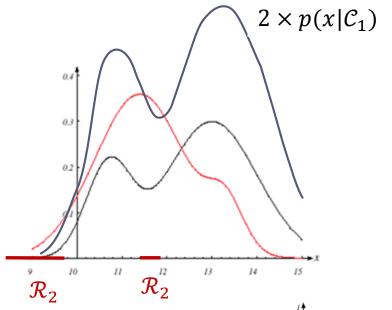
- If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2 Equivalent
- If $\frac{p(x|\mathcal{C}_1)P(\mathcal{C}_1)}{p(x)} > \frac{p(x|\mathcal{C}_2)P(\mathcal{C}_2)}{p(x)}$ decide \mathcal{C}_1 otherwise decide \mathcal{C}_2 Equivalent
- If $p(x|\mathcal{C}_1)P(\mathcal{C}_1) > p(x|\mathcal{C}_2)P(\mathcal{C}_2)$ decide \mathcal{C}_1 otherwise decide \mathcal{C}_2

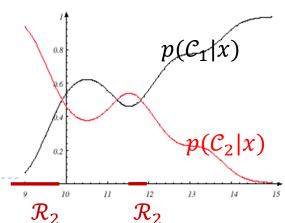
Bayes decision rule: example

b Bayes decision: Choose the class with highest $p(\mathcal{C}_k|x)$







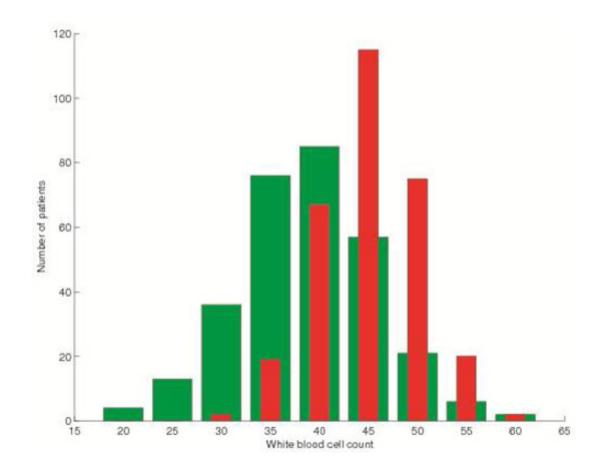


Bayes Classier

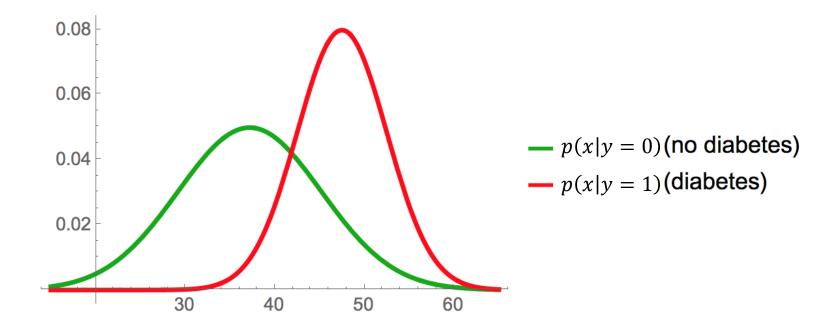
Simple Bayes classifier: estimate posterior probability of each class

- What should the decision criterion be?
 - ▶ Choose class with highest $p(C_k|x)$
- ▶ The optimal decision is the one that minimizes the expected number of mistakes

white blood cell count



- ▶ Doctor has a prior p(y = 1) = 0.2
 - Prior: In the absence of any observation, what do I know about the probability of the classes?
- ▶ A patient comes in with white blood cell count x
- Does the patient have diabetes p(y = 1|x)?
 - posterior
 posterior



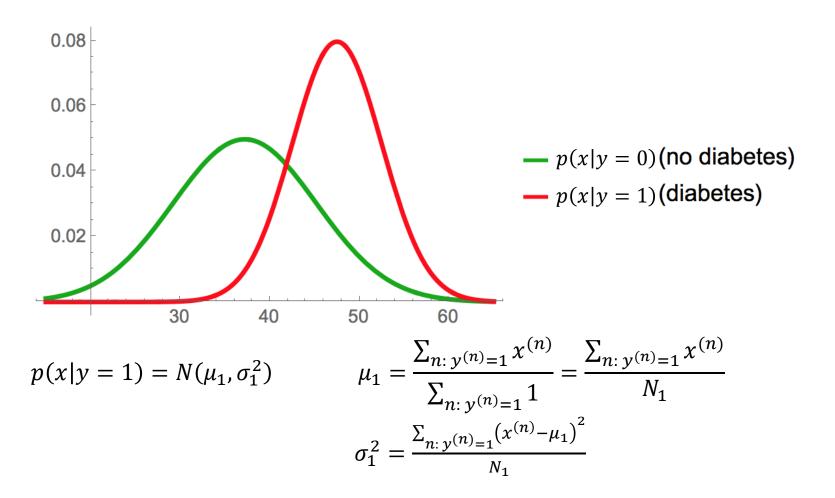
Estimate probability densities from data

If we assume Gaussian distributions for $p(x|\mathcal{C}_1)$ and $p(x|\mathcal{C}_2)$

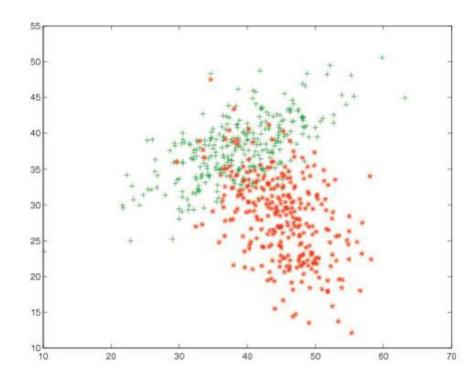
Recall that for samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a Gaussian distribution, the MLE estimates will be

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu)^{2}$$



▶ Add a second observation: Plasma glucose value



Generative approach for this example

• Multivariate Gaussian distributions for $p(x|\mathcal{C}_k)$:

$$p(\mathbf{x}|\mathbf{y} = k) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1,2$$

- Prior distribution $p(x|\mathcal{C}_k)$:
 - $p(y = 1) = \pi, \quad p(y = 0) = 1 \pi$

MLE for multivariate Gaussian

For samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a multivariate Gaussian distribution, the MLE estimates will be:

$$\mu = \frac{\sum_{n=1}^{N} x^{(n)}}{N}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$

Generative approach: example

Maximum likelihood estimation $(D = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N})$:

$$\pi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}, \mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

$$\Sigma_1 = \frac{1}{N_1} \sum_{n=1}^{N} y^{(n)} (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$\Sigma_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$N_1 = \sum_{n=1}^N y^{(n)}$$

$$N_2 = N - N_1$$

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$

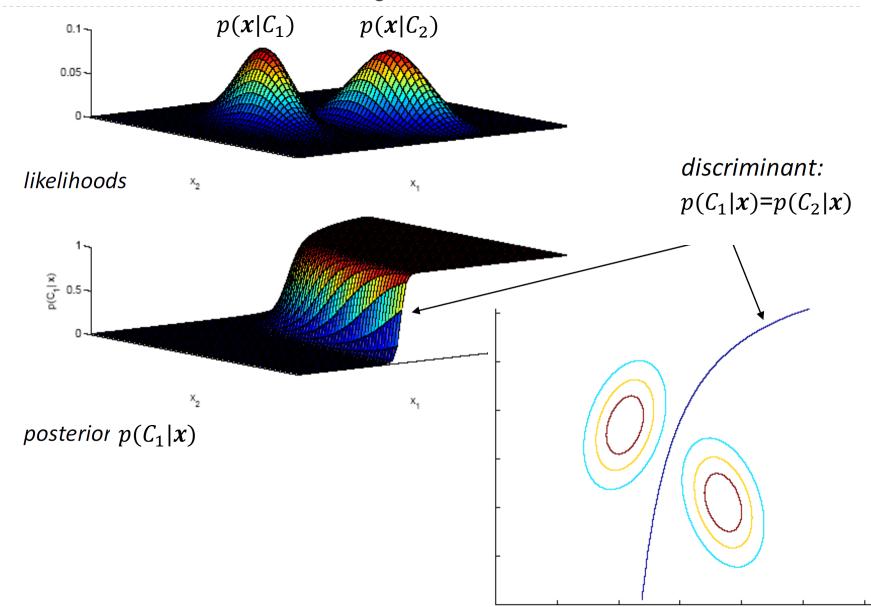
= \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}_k^{-1}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$

Decision boundary



Shared covariance matrix

When classes share a single covariance matrix $\pmb{\varSigma} = \pmb{\varSigma}_1 = \pmb{\varSigma}_2$

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1,2$$

$$p(C_1) = \pi, \quad p(C_2) = 1 - \pi$$

Likelihood

$$\prod_{n=1}^{N} p(\mathbf{x}^{(n)}, y^{(n)} | \pi, \mu_1, \mu_2, \Sigma)$$

$$= \prod_{n=1}^{N} p(\mathbf{x}^{(n)} | y^{(n)}, \mu_1, \mu_2, \Sigma) p(y^{(n)} | \pi)$$

Shared covariance matrix

Maximum likelihood estimation $(D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n)$:

$$\pi = \frac{N_1}{N}
\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}
\mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

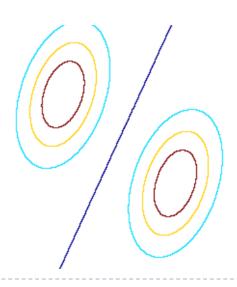
$$\Sigma = \frac{1}{N} \left(\sum_{n \in C_1} (x^{(n)} - \mu_1) (x^{(n)} - \mu_1)^T + \sum_{n \in C_2} (x^{(n)} - \mu_2) (x^{(n)} - \mu_2)^T \right)$$

Decision boundary when shared covariance matrix

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\mathbf{\Sigma}_k^{-1}| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$



Bayes decision rule Multi-class misclassification rate

- Multi-class problem: Probability of error of Bayesian decision rule
 - Simpler to compute the probability of correct decision

$$P(error) = 1 - P(correct)$$

$$P(Correct) = \sum_{i=1}^{K} \int_{\mathcal{R}_i} p(x, \mathcal{C}_i) dx$$

$$= \sum_{i=1}^{K} \int_{\mathcal{R}_i} p(\mathcal{C}_i|x) p(x) dx$$

 \mathcal{R}_i : the subset of feature space assigned to the class \mathcal{C}_i using the classifier

Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

Minimizing Bayes risk (expected loss)

$$E_{x,y}[L(\alpha(x), y)]$$

$$= \int \sum_{j=1}^{K} L(\alpha(x), C_j) p(x, C_j) dx$$

$$= \int p(x) \sum_{j=1}^{K} L(\alpha(x), C_j) p(C_j | x) dx$$

for each x minimize it that is called conditional risk

Bayes minimum loss (risk) decision rule: $\hat{\alpha}(x)$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,\dots,K}{\operatorname{argmin}} \sum_{j=1}^{K} \underbrace{L_{ij}}_{p} p(\mathcal{C}_{j}|\mathbf{x})$$

The loss of assigning a sample to \mathcal{C}_i where the correct class is \mathcal{C}_i

Minimizing expected loss: special case (loss = misclassification rate)

- Problem definition for this special case:
 - If action $\alpha(x) = i$ is taken and the true category is C_j , then the decision is correct if i = j and otherwise it is incorrect.
 - Zero-one loss function:

$$L_{ij} = 1 - \delta_{ij} = \begin{cases} 0 & i = j \\ 1 & o.w. \end{cases}$$

$$\hat{\alpha}(\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmin}} \sum_{j=1}^{K} L_{ij} p(\mathcal{C}_j | \mathbf{x})$$

$$= \underset{i=1,\dots,K}{\operatorname{argmin}} 0 \times p(\mathcal{C}_i|\mathbf{x}) + \sum_{j\neq i} p(\mathcal{C}_j|\mathbf{x})$$

$$= \underset{i=1,...,K}{\operatorname{argmin}} 1 - p(\mathcal{C}_i|\mathbf{x}) = \underset{i=1,...,K}{\operatorname{argmax}} p(\mathcal{C}_i|\mathbf{x})$$

Probabilistic discriminant functions

- Discriminant functions: A popular way of representing a classifier
 - A discriminant function $f_i(x)$ for each class C_i (i = 1, ..., K):
 - x is assigned to class C_i if:

$$f_i(\mathbf{x}) > f_j(\mathbf{x}) \ \forall j \neq i$$

- Representing Bayesian classifier using discriminant functions:
 - ▶ Classifier minimizing error rate: $f_i(x) = P(C_i|x)$
 - ▶ Classifier minimizing risk: $f_i(x) = -\sum_{j=1}^K L_{ij} p(C_j | x)$

Naïve Bayes classifier

- Generative methods
 - High number of parameters
- Assumption: Conditional independence

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$

Naïve Bayes classifier

 \blacktriangleright In the decision phase, it finds the label of x according to:

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k | \mathbf{x})$$

$$\underset{k=1,...,K}{\operatorname{argmax}} p(C_k) \prod_{i=1}^{n} p(x_i | C_k)$$

$$p(\mathbf{x}|C_k) = p(x_1|C_k) \times p(x_2|C_k) \times \dots \times p(x_d|C_k)$$
$$p(C_k|\mathbf{x}) \propto p(C_k) \prod_{i=1}^n p(x_i|C_k)$$

Naïve Bayes classifier

- Finds d univariate distributions $p(x_1|C_k), \cdots, p(x_d|C_k)$ instead of finding one multi-variate distribution $p(x|C_k)$
 - Example I: For Gaussian class-conditional density $p(x|C_k)$, it finds d+d (mean and sigma parameters on different dimensions) instead of $d+\frac{d(d+1)}{2}$ parameters
 - Example 2: For Bernoulli class-conditional density $p(x|C_k)$, it finds d (mean parameters on different dimensions) instead of 2^d-1 parameters
- It first estimates the class conditional densities $p(x_1|C_k), \cdots, p(x_d|C_k)$ and the prior probability $p(C_k)$ for each class $(k=1,\ldots,K)$ based on the training set.

Naïve Bayes: discrete example

$$p(H = Yes) = 0.3$$

$$p(D = Yes|H = Yes) = \frac{1}{3}$$

$$p(S = Yes|H = Yes) = \frac{2}{3}$$

•
$$p(D = Yes|H = No) = \frac{2}{7}$$

$$p(S = Yes|H = No) = \frac{2}{7}$$

Smoke (S)	Heart Disease (H)
Ν	Y
Ν	N
Y	N
Y	Ν
Ν	N
Y	Y
Ν	N
Y	Y
N	N
Z	N
	(S) N N Y Y N Y N N Y N

- Decision on x = [Yes, Yes] (a person that has diabetes and also smokes):
 - $p(H = Yes|x) \propto p(H = Yes)p(D = yes|H = Yes)p(S = yes|H = Yes) = 0.066$
 - $p(H = No|x) \propto p(H = No)p(D = yes|H = No)p(S = yes|H = No) = 0.057$
 - Thus decide <math>H = yes

Probabilistic classifiers

How can we find the probabilities required in the Bayes decision rule?

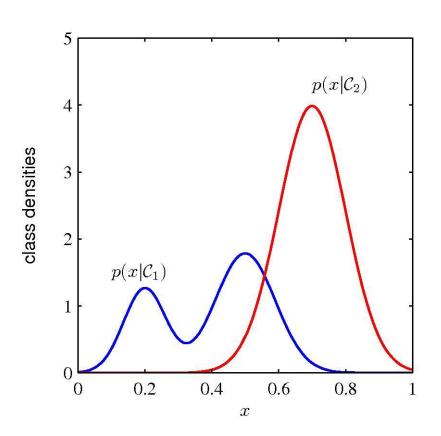
- Probabilistic classification approaches can be divided in two main categories:
 - Generative
 - Estimate pdf $p(x, C_k)$ for each class C_k and then use it to find $p(C_k|x)$
 - \square or alternatively estimate both pdf $p(x|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ to find $p(\mathcal{C}_k|x)$
 - Discriminative
 - ▶ Directly estimate $p(C_k|x)$ for each class C_k

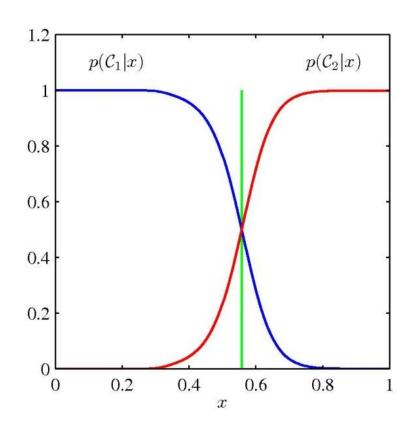
Generative approach

- Inference stage
 - Determine class conditional densities $p(x|\mathcal{C}_k)$ and priors $p(\mathcal{C}_k)$
 - Use the Bayes theorem to find $p(C_k|x)$

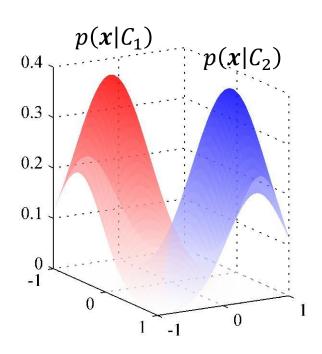
- Decision stage: After learning the model (inference stage),
 make optimal class assignment for new input
 - if $p(\mathcal{C}_i|\mathbf{x}) > p(\mathcal{C}_j|\mathbf{x}) \ \ \forall j \neq i$ then decide \mathcal{C}_i

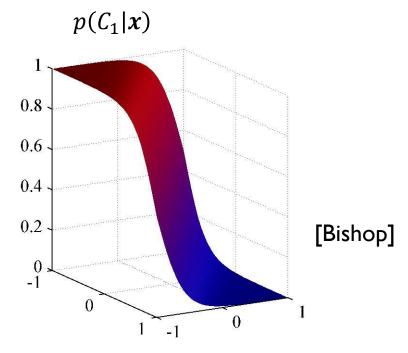
Discriminative vs. generative approach





Class conditional densities vs. posterior





$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + \mathbf{w}_0)$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

Discriminative approach

- Inference stage
 - Determine the posterior class probabilities $P(C_k|x)$ directly
- Decision stage: After learning the model (inference stage),
 make optimal class assignment for new input
 - if $P(C_i|\mathbf{x}) > P(C_i|\mathbf{x}) \quad \forall j \neq i$ then decide C_i

Posterior probabilities

Two-class: $p(\mathcal{C}_k|x)$ can be written as a logistic sigmoid for a wide choice of $p(x|\mathcal{C}_k)$ distributions

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(a(\mathbf{x})) = \frac{1}{1 + \exp(-a(\mathbf{x}))}$$

Multi-class: $p(\mathcal{C}_k|x)$ can be written as a soft-max for a wide choice of $p(x|\mathcal{C}_k)$

$$p(C_k|\mathbf{x}) = \frac{\exp(a_k(\mathbf{x}))}{\sum_{j=1}^K \exp(a_j(\mathbf{x}))}$$

Discriminative approach: logistic regression

More general than discriminant functions:

K = 2

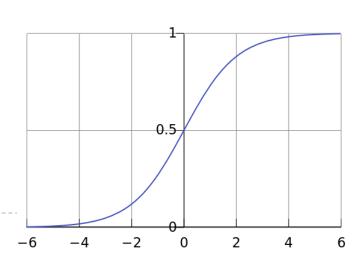
• f(x; w) predicts posterior probabilities P(y = 1|x)

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}) \qquad \mathbf{x} = [1, x_1, \dots, x_d] \\ \mathbf{w} = [w_0, w_1, \dots, w_d]$$

 $\sigma(.)$ is an activation function

- Sigmoid (logistic) function
 - Activation function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



Logistic regression

• f(x; w): probability that y = 1 given x (parameterized by w)

$$P(y = 1 | x, w) = f(x; w)$$
 $X = 0.1$

$$P(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - f(\mathbf{x}; \mathbf{w})$$

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$0 \le f(\mathbf{x}; \mathbf{w}) \le 1$$
estimated probability of $y = 1$ on input x

- Example: Cancer (Malignant, Benign)
 - f(x; w) = 0.7
 - ▶ 70% chance of tumor being malignant

Logistic regression: Decision surface

• Decision surface f(x; w) = constant

$$f(x; w) = \sigma(w^T x) = \frac{1}{1 + e^{-(w^T x)}} = 0.5$$

 \triangleright Decision surfaces are linear functions of x

if
$$f(x; w) \ge 0.5$$
 then $y = 1$ else $y = 0$

Equivalent to

if
$$\mathbf{w}^T \mathbf{x} + w_0 \ge 0$$
 then $y = 1$ else $y = 0$

Logistic regression: ML estimation

Maximum (conditional) log likelihood:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \log \prod_{i=1}^{n} p(y^{(i)} | \boldsymbol{w}, \boldsymbol{x}^{(i)})$$

$$p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)}) = f(\mathbf{x}^{(i)}; \mathbf{w})^{y^{(i)}} (1 - f(\mathbf{x}^{(i)}; \mathbf{w}))^{(1-y^{(i)})}$$

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w})$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \log \left(f(\mathbf{x}^{(i)}; \mathbf{w}) \right) + (1 - y^{(i)}) \log \left(1 - f(\mathbf{x}^{(i)}; \mathbf{w}) \right) \right]$$

Logistic regression: cost function

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

$$J(\mathbf{w}) = -\sum_{i=1}^{n} \log p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{n} -y^{(i)} \log (f(\mathbf{x}^{(i)}; \mathbf{w})) - (1 - y^{(i)}) \log (1 - f(\mathbf{x}^{(i)}; \mathbf{w}))$$

No closed form solution for

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = 0$$

• However J(w) is convex.

Logistic regression: Gradient descent

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\!\!\mathbf{w}} J(\mathbf{w}^t)$$

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \sum_{i=1}^{n} (f(\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)})\mathbf{x}^{(i)}$$

Is it similar to gradient of SSE for linear regression?

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T}\mathbf{x}^{(i)} - \mathbf{y}^{(i)})\mathbf{x}^{(i)}$$

Logistic regression: loss function

$$Loss(y, f(x; w)) = -y \times \log(f(x; w)) - (1 - y) \times \log(1 - f(x; w))$$

Since
$$y = 1$$
 or $y = 0 \Rightarrow Loss(y, f(x; w)) = \begin{cases} -\log(f(x; w)) & \text{if } y = 1 \\ -\log(1 - f(x; w)) & \text{if } y = 0 \end{cases}$

How is it related to zero-one loss?

$$Loss(y, \hat{y}) = \begin{cases} 1 & y \neq \hat{y} \\ 0 & y = \hat{y} \end{cases}$$

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + exp(-\mathbf{w}^T \mathbf{x})}$$

Logistic regression: cost function (summary)

- Logistic Regression (LR) has a more proper cost function for classification than SSE and Perceptron
- Why is the cost function of LR also more suitable than?

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}) \right)^{2}$$

where $f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$

- The conditional distribution p(y|x, w) in the classification problem is not Gaussian (it is Bernoulli)
- The cost function of LR is also convex

Multi-class logistic regression

- For each class k, $f_k(x; W)$ predicts the probability of y = k
 - i.e., P(y = k | x, W)
- On a new input x, to make a prediction, pick the class that maximizes $f_k(x; W)$:

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{k=1,\dots,K} f_k(\mathbf{x})$$

if
$$f_k(x) > f_j(x)$$
 $\forall j \neq k$ then decide C_k

Multi-class logistic regression

$$K > 2$$

 $y \in \{1, 2, ..., K\}$

$$f_k(\mathbf{x}; \mathbf{W}) = p(y = k|\mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \mathbf{x})}$$

- Normalized exponential (aka softmax)
 - If $\mathbf{w}_k^T \mathbf{x} \gg \mathbf{w}_j^T \mathbf{x}$ for all $j \neq k$ then $p(C_k | \mathbf{x}) \simeq 1, p(C_j | \mathbf{x}) \simeq 0$

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^{K} p(\mathbf{x}|C_j)p(C_j)}$$

Logistic regression: multi-class

$$\widehat{W} = \underset{W}{\operatorname{argmin}} J(W)$$

$$J(W) = -\log \prod_{i=1}^{n} p(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}, W)$$

$$= -\log \prod_{i=1}^{n} \prod_{k=1}^{K} f_k(\mathbf{x}^{(i)}; W)^{y_k^{(i)}}$$

$$= -\sum_{i=1}^{n} \sum_{k=1}^{K} y_k^{(i)} \log (f_k(\mathbf{x}^{(i)}; W))$$

y is a vector of length K (I-of-K coding) e.g., $y = [0,0,1,0]^T$ when the target class is C_3

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \vdots \\ \mathbf{y}^{(n)} \end{bmatrix} = \begin{bmatrix} y_1^{(1)} & \cdots & y_K^{(1)} \\ \vdots & \ddots & \vdots \\ y_1^{(n)} & \cdots & y_K^{(n)} \end{bmatrix}$$

Logistic regression: multi-class

$$\boldsymbol{w}_{j}^{t+1} = \boldsymbol{w}_{j}^{t} - \eta \nabla_{\boldsymbol{W}} J(\boldsymbol{W}^{t})$$

$$\nabla_{\mathbf{w}_j} J(\mathbf{W}) = \sum_{i=1}^n \left(f_j(\mathbf{x}^{(i)}; \mathbf{W}) - y_j^{(i)} \right) \mathbf{x}^{(i)}$$

Logistic Regression (LR): summary

▶ LR is a linear classifier

- LR optimization problem is obtained by maximum likelihood
 - when assuming Bernoulli distribution for conditional probabilities whose mean is $\frac{1}{1+e^{-(w^Tx)}}$
- No closed-form solution for its optimization problem
 - But convex cost function and global optimum can be found by gradient ascent

Discriminative vs. generative: number of parameters

- d-dimensional feature space
- Logistic regression: d + 1 parameters
 - $\mathbf{w} = (w_0, w_1, ..., w_d)$
- Generative approach:
 - Gaussian class-conditionals with shared covariance matrix
 - ▶ 2*d* parameters for means
 - d(d+1)/2 parameters for shared covariance matrix
 - one parameter for class prior $p(C_1)$.
- But LR is more robust, less sensitive to incorrect modeling assumptions

Summary of alternatives

Generative

- Most demanding, because it finds the joint distribution $p(x, C_k)$
- Usually needs a large training set to find $p(x|\mathcal{C}_k)$
- ▶ Can find $p(x) \Rightarrow$ Outlier or novelty detection

Discriminative

- Specifies what is really needed (i.e., $p(C_k|x)$)
- More computationally efficient

Resources

C. Bishop, "Pattern Recognition and Machine Learning", Chapter 4.2-4.3.