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Classification problem: probabilistic view

» Each feature as a random variable
» Class label also as a random variable

» We observe the feature values for a random sample and
we intend to find its class label

Evidence: feature vector x
Query: class label



Definitions

» Posterior probability: p(Cy |x)

» Likelihood or class conditional probability: p(x|Cy)

» Prior probability: p(Cy)

p(x): pdf of feature vector x (p(x) = Yr_, p(x|C:)P(Ch))

p(x|Cy): pdf of feature vector x for samples of class C;,

p(Cy): probability of the label be C;
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Bayes decision rule

If P(€1|x) > P(Czlx) decide 61
otherwise decide C,

_ [p(Cy]x) ifwe decide C,
p(error|x) = {P(Cl|x) if we decide C,

» If we use Bayes decision rule:

P(error|x) = min{P(C|x), P(Cy|x)}

Using Bayes rule, for each x, P(error|x) is as small as
possible and thus this rule minimizes the probability of error



Optimal classifier

» The optimal decision is the one that minimizes the
expected number of mistakes

» We show that Bayes classifier is an optimal classifier



Bayes decision rule
Minimizing misclassification rate

» Decision regions: R;, = {x|a(x) = k}
All points in R}, are assigned to class Cy

p(error) = Exy[I(a(x) #y)]

=p(x ER{,Cy) +p(x € Ry, Cq)

- f p(x, C,) dx + f n(x,C,) dx
R, R,

= [ pCrp@dx+ | petope dx
R4 R

Choose class with highest p(C|x) as a(x)
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Bayes minimum error

» Bayes minimum error classifier:

rg(lgl Ex,y [I ((X(.X') + y)] Zero-one loss

If we know the probabilities in advance then the above
optimization problem will be solved easily.

a(x) = argmax p(y|x)
y

» In practice, we can estimate p(y|x) based on a set of
training samples D



Bayes theorem

Likelihood  prior

» Bayes’ theorem P‘%Ste”m’ ! 7/
_ p(xICr)p(Cr)
p(Crlx) = ()

» Posterior probability: p(Cy |x)
» Likelihood or class conditional probability: p(x|Cy)
» Prior probability: p(Cy,)

p(x): pdf of feature vector x (p(x) = Y k_, p(x|C:)P(CY))
p(x|Cy): pdf of feature vector x for samples of class Cj,

p(Cy): probability of the label be Cj,



Bayes decision rule: example

» Bayes decision: Choose the class with highest p(Cy|x)

N p(Cy )

S P(Calx)
H\
| S~
! i1 12 i/ 4 I35
R R,
p(x|Cy)p(Ck)
p(Crlx) =

p(x)

p(x) = p(Cp(x|Cy) + p(C)p(x[Cy)




Bayesian decision rule
» If P(C1|x) > P(C,|x) decide C,
otherwise decide C, > Equivalent

y If PHFICUP(C)  p(IC)P(C2) 4 e e,
p(x) p(x)

otherwise decide C,
Equivalent

otherwise decide C,




Bayes decision rule: example

» Bayes decision: Choose the class with highest p(Cy|x)

p(x[C2)

NS

p(x[C1)

p(Cy) =

p(Cy) =

W= WiNn =

12

/ ,
I} \\\

2 X p(x[Cy)




Bayes Classier

» Simple Bayes classifier: estimate posterior probability of
each class

» What should the decision criterion be!?
Choose class with highest p(Ci|x)

» The optimal decision is the one that minimizes the
expected number of mistakes
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Diabetes example
» white blood cell count
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White blood call count

14 This example has been adopted from Sanja Fidler’s slides, University of Toronto, CSC411



Diabetes example

» Doctor has a prior p(y = 1) = 0.2

Prior: In the absence of any observation, what do | know about
the probability of the classes?

» A patient comes in with white blood cell count x

» Does the patient have diabetes p(y = 1]x)?

given a new observation, we still need to compute the
posterior
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Diabetes example

0.08

0.06 -

— p(x]y = 0)(no diabetes)

0.04
- — p(x|ly = 1) (diabetes)

0.02+

16 This example has been adopted from Sanja Fidler’s slides, University of Toronto, CSC411



Estimate probability densities from data

» If we assume Gaussian distributions for p(x|C;) and
p(x|C>)

» Recall that for samples {x, ..., x(™}, if we assume a
Gaussian distribution, the MLE estimates will be

Lo~ ()
= 3
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Diabetes example

0.08}
0.06]
0.04| — p(xly = 0)(no diabetes)
| — p(x|y = 1)(diabetes)
0.02:-
( . S
30 40 50 60
Z . (n)=1x(n) Z . (n)zlx(n)
p(xly =1) = N(uy, 07) W= — =—
Zn:y(n)=1 1 1
X (n)_ (x(n)_ll )2
0-12 = n.y( )=1 !

18 This example has been adopted from Sanja Fidler’s

slides, University of Toronto, CSC411



Diabetes example

» Add a second observation: Plasma glucose value
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19 This example has been adopted from Sanja Fidler’s slides, University of Toronto, CSC411



Generative approach for this example

» Multivariate Gaussian distributions for p(x|Cy):
p(xly = k)

1 1
= G P T m) B x )

k=12

» Prior distribution p(x|Cy):
py=D=m ply=0=1-m
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MLE for multivariate Gaussian

» For samples {x, ..., x™1} if we assume a multivariate
Gaussian distribution, the MLE estimates will be:
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Generative approach: example

Maximum likelihood estimation (D = {(x("),y(”))}gzl):

N
T=—
N
XNy e (1—y™)x™ N
Hi = Ny y Uy = N, N; = z y(n)
n=1

S L LR T
2 = — V1

Er = 3 Inaa (L =y ™) (x™ — p) (x™ ~ n)
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Decision boundary for Gaussian Bayes
classifier

p(Cilx) = p(Cz|x)

_ p(x|Ck)DP(Cr)
p(Clx) = ()

Inp(Cq|x) = Inp(Cz|x)

Inp(x|Cy) + Inp(Cy1) — Inp(x)
= Inp(x|C;) + Inp(C;) — Inp(x)

Inp(x|C;) +Inp(Cy) =Inp(x|C;) +Inp(C,)

Inp(x|Cy) .

d 1 _
= —Eln 2T —Eln‘Zkl‘ —E(x — W) " Z (e — )
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Decision boundary
0.1 p(x|C1) p(x|C2)

discriminant:
p(Ci|x)=p(Cy|x)

posterior p(Cy|x) O




Shared covariance matrix

» When classes share a single covariance matrix X = X
=X,

1 1
p(x[Cy) = (21)272|5|172 exp{—z (x — )" 270 — )}
k=12

» p(Cy) =, p(C)=1—-m
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Likelihood

N
Hp(x(”),y(")lm 1, 1, X)
n=1

N
= 1_[p(x(")ly“”,ul,uz,Z)p(y(”)Iﬂ)
n=1
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Shared covariance matrix

. . n
» Maximum likelihood estimation (D = {(x(‘),y(‘))}i_l):
"IN
N_, y(n)x(n)
Hi = N,
Yn—1(1 = y)x™
K2 = N
2

nec, nec;
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Decision boundary when shared covariance
matrix

Inp(x|Cy) +Inp(Cy) =Inp(x|C;) +Inp(C;)

lnp(ziclc’k) . .
= —Eln 2T — Eln\fﬁl\ ~ E(x — ) 2T (0 — )

0
()
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Bayes decision rule
Multi-class misclassification rate

» Multi-class problem: Probability of error of Bayesian
decision rule

Simpler to compute the probability of correct decision
P(error) =1 — P(correct)

K
P(Correct) = ZJ p(x,C;) dx

i=1 " i
K
- ; Li p(Ci[x)p(x) dx

R;: the subset of feature space assigned to the class C; using the classifier
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Bayes minimum error

» Bayes minimum error classifier:
rg(lgl Ex,y [I(a(x) + y)] Zero-one loss

a(x) = argmax p(y|x)
Yy
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Minimizing Bayes risk (expected loss)
ExylL(a(x),y)]

- JzL(a(X),Cj)p(x' Cj)dx
j=1

_ f p() ) L(a(®),6)p(C;lx)dx
{ J

N

for each x minimize it that is called conditional risk

» Bayes minimum loss (risk) decision rule: & (x)
K
a(x) = argminz Liip(Cilx)
i=1,..K &= 1’

The loss of assigning a sample to C; where the correct class is C;
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Minimizing expected loss: special case
(loss = misclassification rate)

» Problem definition for this special case:
If action a(x) =i is taken and the true category is C;, then the
decision is correct if i = j and otherwise it is incorrect.
Zero-one loss function:
_ _)0 i=j

alx) = argmanLUp(C’ |x)

i=1,...K

= argmln 0 X p(C;|x) + z p(C’ |x)

i=1,..
]#—'L

= argmin 1 — p(C;|x) = argmax p(C;|x)
i=1,..,K i=1,.,K
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Probabilistic discriminant functions

» Discriminant functions: A popular way of representing
a classifier

A discriminant function f;(x) for each class C; (i = 1, ..., K):

X is assigned to class C; if:

fi(3) > f(x) V) #i

» Representing Bayesian classifier using discriminant
functions:

Classifier minimizing error rate: f;,(x) = P(C;|x)
Classifier minimizing risk: f;(x) = —X5_, L;;p(¢;|x)
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Naive Bayes classifier

» Generative methods

High number of parameters

» Assumption: Conditional independence

p(x|Cy) = p(x1|Cy) X p(x2|Cy) X -+ X p(xg|Cy)
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Naive Bayes classifier

» In the decision phase, it finds the label of x according to:

argmax p(Cy | x)
k=1,..,K

n
argmaxp(C) | | pCxilCi)
k=1,...,K =1

p(x|Cy) = P(x1|Crll<) X p(xz|Cy) X -+ X p(xq]Cy)

p(Cl0) < p(Co) | [pealco
i=1
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Naive Bayes classifier

» Finds d univariate distributions p(x{|Cy), -+, p(x4|C}) instead
of finding one multi-variate distribution p(x|Cy)

» Example |: For Gaussian class-conditional density p(x|Cy), it finds d + d (mean
d(d+1)

and sigma parameters on different dimensions) instead of d + parameters

» Example 2: For Bernoulli class-conditional density p(x|Cy), it finds d (mean
parameters on different dimensions) instead of 2¢ — 1 parameters

» It first estimates the class conditional densities
p(x1|Cy), -, p(x4|C) and the prior probability p(C;) for
each class (k = 1, ..., K) based on the training set.
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Naive Bayes: discrete example

Diabetes | Smoke Heart

» p(H =Yes) = 0.3 > noke | et
Y N Y
» p(D =Yes|H =Yes) :% Y N N
2 N Y N
» p(S =Yes|H =Yes) = - N > N
N N N
4 p(DzYeslH:No):% N Y Y
N N N
» p(S =Yes|H = No) :g N - v
N N N
Y N N

» Decision on x = [Yes, Yes] (a person that has diabetes and also smokes):
p(H =Yes|x) « p(H = Yes)p(D = yes|H = Yes)p(S = yes|H = Yes) = 0.066
p(H = No|x) <« p(H = No)p(D = yes|H = No)p(S = yes|H = No) = 0.057

Thus decide H = yes
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Probabilistic classifiers

» How can we find the probabilities required in the Bayes
decision rule!?

» Probabilistic classification approaches can be divided in
two main categories:

Generative
Estimate pdf p(x,C;) for each class C, and then use it to find

p(Ck|x)
or alternatively estimate both pdf p(x|C}) and p(C},) to find p(Cj |x)

Discriminative
Directly estimate p(C|x) for each class Cj,
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Generative approach

» Inference stage

Determine class conditional densities p(x|C,) and priors

p(Cx)
Use the Bayes theorem to find p(Cj | x)

» Decision stage: After learning the model (inference stage),
make optimal class assignment for new input

if p(C;lx) > p(Cj|x) Vj #i then decide C;

42



class densities

Discriminative vs. generative approach

5
p(x|C2)
4}
3 L
2 L
p(z|Cy)

1 B
0 . . .

0 0.2 04 0.6 0.8
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Class conditional densities vs. posterior

p(ac_l C1) o

g TR

034.---

p(C1lx) = o(W'x + wy)

w=ZX""(u — 1)

HIE 42l +
Wgo = _E”IE 1”1 +§ﬂ£2 1”2 + lnp(ez)
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Discriminative approach

» Inference stage

Determine the posterior class probabilities P(Cj|x) directly

» Decision stage: After learning the model (inference stage),
make optimal class assignment for new input

if P(C;|x) > P(Cj|x) Vj #i then decide C;
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Posterior probabilities

» Two-class: p(Ci|x) can be written as a logistic sigmoid for
a wide choice of p(x|C;,) distributions

p(Cilx) = o(a(x)) =

1+ exp(—a(x))

» Multi-class: p(Cy|x) can be written as a soft-max for a
wide choice of p(x|Cy,)

Sl = SR

j=1exp(a; (x))
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Discriminative approach: logistic regression

» More general than discriminant functions: K =2
f (x; w) predicts posterior probabilities P(y = 1|x)
f(x; W) — O'(WTX) x=[1,xq,..,x4]

W = [WOI Wy, ---)Wd]

o(.) is an activation function

» Sigmoid (logistic) function

Activation function

1
o(z) =

1+e7%2

4 7 | Fal | |



Logistic regression

» f(x; w): probability that y = 1 given x (parameterized by w)

K=2
Py =1lx,w) = f(x;w) y € {0,1)

Py =0|x,w) =1— f(x;w)

fl;w) =cwlx)
0<f(x;w) <1
estimated probability of y = 1 on input x

» Example: Cancer (Malignant, Benign)
f(x;w) =0.7

70% chance of tumor being malignant
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Logistic regression: Decision surface

» Decision surface f(x; w) = constant
1
= 0.5

1+e~Wlo

flw) =ow'x) =

» Decision surfaces are linear functions of x
if f(x;w)>0.5 theny =1
elsey =20
Equivalent to

ifwix+wy,=>0theny =1
else y=0
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Logistic regression: ML estimation

» Maximum (conditional) log likelihood:
n
W = argmax logl_[p(y(i)|w, x(i))
v i=1

L )
o0l 2) = 1) (1= o)

lognp(y|X, w)
_ 2 [y(i)log (f(x(i); W)) + (1 — y(i))log (1 — f(x(i); W))]
i=1
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Logistic regression: cost function

W = argmin J(w)
w

n
J(w) = —Z logp(y®|w, x®)
=1

n

— z —yOlog (f(x®;w)) - (1 = yO)log (1 - £ (xV; w))

=1

» No closed form solution for

Vw/(w) =0

» However /(W) is convex.
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Logistic regression: Gradient descent

Wt+1 — Wt _ T]VW](Wt)
V] (W) = zn (F(xD; w) — y®)x®
=1

» Is it similar to gradient of SSE for linear regression!?

n " Il
VW](W) — E | 1(WTx(l) — y(l))x(l)
i=
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Logistic regression: loss function
Loss(y, f(x;w)) = —y x log(f(x; w)) — (1 — y) x log(1 — f(x; w))

=1 ; ify =1
sicey = 1ory =0 = Loss(yfGiw) = {_o 280 C) L

ify=20
How is it related to zero-one loss?
R 1 y#9y
Loss(y,y) = ~
».9) {o V=9
1

fow) = 1+ exp(—wTx)
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Logistic regression: cost function (summary)
» Logistic Regression (LR) has a more proper cost function for

classification than SSE and Perceptron

» Why is the cost function of LR also more suitable than!?
1O . . 2
Jwy=->  (yO —fw))

where f(x;w) = a(w'x)

The conditional distribution p(y|x,w) in the classification problem is
not Gaussian (it is Bernoulli)

The cost function of LR is also convex
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Multi-class logistic regression

» For each class k, f;,(x; W) predicts the probability of y = k
i.e, P(y = k|x, W)

» On a new input X, to make a prediction, pick the class that
maximizes f;, (x; W):

a(x) = argmax fi, (x)
k=1,..,K

if fr(x) > fj(x) Vj#k then
decide C,
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Multi-class logistic regression

K>?2
y €{1,2,.., K}

exp (W?;x )

fro W) =p(y =kl|x) = K exp(wlx)

» Normalized exponential (aka softmax)
If wix > wix forall j # k then p(Cy|x) = 1,p(Cj|x) =0

p(x|Cy)p(Cy)
5'{=1 p(x|Cj)p(Cj)

p(Cilx) =

o6



Logistic regression: multi-class

—

W = argmin J(W)
74

n
J(W) = —log 1_[ p(y®|x®, W)
=1

~
=

i= =1
n K
_ (1) i
= —z Z Vi log ( fie(x; W)
1=1 k=1
W = [Wl
y is a vector of length K (l-of-K coding)
e.g.,y = [0,0,1,0]7 when the target class is C5 y
Y=1:
57
y(n)
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. yK
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. yK

(n
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Logistic regression: multi-class

witt = wj — V(W)

B =Y (10 w) = 52) 2
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Logistic Regression (LR): summary

» LR is a linear classifier

» LR optimization problem is obtained by maximum
likelihood

when assuming Bernoulli distribution for conditional
probabilities whose mean is

1+e— WD)

» No closed-form solution for its optimization problem

But convex cost function and global optimum can be found by
gradient ascent
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Discriminative vs. generative: number of
parameters

» d-dimensional feature space

» Logistic regression: d + 1 parameters

w= Wy Wq,..,Wg)

» Generative approach:

Gaussian class-conditionals with shared covariance matrix
2d parameters for means
d(d + 1)/2 parameters for shared covariance matrix
one parameter for class prior p(Cy).

» But LR is more robust, less sensitive to incorrect modeling
assumptions
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Summary of alternatives

» Generative
Most demanding, because it finds the joint distribution p(x, C;,)
Usually needs a large training set to find p(x|Cy)
Can find p(x) = Outlier or novelty detection

» Discriminative
Specifies what is really needed (i.e., p(Ck|X))
More computationally efficient
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Resources

» C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter 4.2-4.3.
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