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Topics

 Discriminant functions

 Linear classifiers

 Perceptron

 Fisher

 Multi-class classification
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SVM will be covered in the later lectures



Classification problem
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 Given:Training set

 labeled set of 𝑁 input-output pairs 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

 𝑦 ∈ {1, … , 𝐾}

 Goal: Given an input 𝒙, assign it to one of 𝐾 classes

 Examples:

 Spam filter

 Handwritten digit recognition

 …



Discriminant functions
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 Discriminant function can directly assign each vector 𝒙 to a

specific class 𝑘

 A popular way of representing a classifier

 Many classification methods are based on discriminant functions

 Assumption: the classes are taken to be disjoint

 The input space is thereby divided into decision regions

 boundaries are called decision boundaries or decision surfaces.



Discriminant Functions
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 Discriminant functions: A discriminant function 𝑓𝑖 𝒙
for each class 𝒞𝑖 (𝑖 = 1,… , 𝐾):

 𝒙 is assigned to class 𝒞𝑖 if:

𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖

 Thus, we can easily divide the feature space into 𝐾 decision

regions

∀𝒙, 𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖 ⇒ 𝒙 ∈ ℛ𝑖

 Decision surfaces (or boundaries) can also be found using

discriminant functions

 Boundary of the ℛ𝑖 and ℛ𝑗 separating samples of these two categories:

∀𝒙, 𝑓𝑖 𝒙 = 𝑓𝑗(𝒙)

ℛ𝑖: Region of the 𝑖-th class



Discriminant Functions: Two-Category
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 Decision surface: 𝑓 𝒙 = 0

 For two-category problem, we can only find a function 𝑓 ∶ ℝd

→ ℝ
 𝑓1 𝒙 = 𝑓(𝒙)

 𝑓2 𝒙 = −𝑓(𝒙)

 First, we explain two-category classification problem and then

discuss the multi-category problems.

 Binary classification: a target variable 𝑦 ∈ 0,1 or 𝑦 ∈ −1,1



Linear classifiers
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 Decision boundaries are linear in 𝒙, or linear in some

given set of functions of 𝒙

 Linearly separable data: data points that can be exactly

classified by a linear decision surface.

 Why linear classifier?

 Even when they are not optimal, we can use their simplicity

 are relatively easy to compute

 In the absence of information suggesting otherwise, linear classifiers are an

attractive candidates for initial, trial classifiers.



Two Category
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 𝑓 𝒙;𝒘 = 𝒘𝑇𝒙 + 𝑤0 = 𝑤0 +𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑
 𝒙 = 𝑥1 𝑥2 …𝑥𝑑
 𝒘 = [𝑤1 𝑤2 …𝑤𝑑]

 𝑤0: bias

 if 𝒘𝑇𝒙 + 𝑤0 ≥ 0 then 𝒞1
 else 𝒞2

Decision surface (boundary):𝒘𝑇𝒙 + 𝑤0 = 0

𝒘 is orthogonal to every vector lying within the decision surface



Example
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𝑥1

𝑥2

1 2 3

1

2

3

4

3 −
3

4
𝑥1 − 𝑥2 = 0

if 𝒘𝑇𝒙 + 𝑤0 ≥ 0 then 𝒞1
else 𝒞2



Linear classifier: Two Category
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 Decision boundary is a (𝑑 − 1)-dimensional hyperplane 𝐻 in

the 𝑑-dimensional feature space

 The orientation of 𝐻 is determined by the normal vector 𝑤1, … , 𝑤𝑑

 𝑤0 determine the location of the surface.

 The normal distance from the origin to the decision surface is 𝑤0

𝒘

𝒙 = 𝒙⊥ + 𝑟
𝒘

𝒘

𝒘𝑇𝒙 + 𝑤0 = 𝑟 𝒘 ⇒ 𝑟 =
𝒘𝑇𝒙 + 𝑤0

𝒘

gives a signed measure of the perpendicular

distance 𝑟 of the point 𝒙 from the decision surface

𝑓 𝒙 = 0

𝒙⊥



Linear boundary: geometry

11

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 > 0

𝒘𝑇𝒙 + 𝑤0 < 0

𝒘𝑇𝒙 + 𝑤0

𝒘



Non-linear decision boundary
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 Choose non-linear features

 Classifier still linear in parameters 𝒘

𝑥1

𝑥2

1

1

−1 + 𝑥1
2 + 𝑥2

2 = 0

if 𝒘𝑇𝝓(𝒙) ≥ 0 then 𝑦 = 1
else  𝑦 = −1

𝒘 = 𝑤0, 𝑤1, … , 𝑤𝑚 = [−1, 0, 0,1,1,0]

-1
1

𝝓 𝒙 = [1, 𝒙1, 𝒙2 , 𝒙1
2, 𝒙2

2, 𝒙1𝒙2]

𝒙 = [𝒙1, 𝒙2]



Cost Function for linear classification
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 Finding linear classifiers can be formulated as an optimization

problem:

 Select how to measure the prediction loss

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
, a cost function 𝐽 𝒘 is defined

 Solve the resulting optimization problem to find parameters:

 Find optimal  𝑓 𝒙 = 𝑓 𝒙;  𝒘 where  𝒘 = argmin
𝒘

𝐽 𝒘

 Criterion or cost functions for classification:

 We will investigate several cost functions for the classification problem



SSE cost function for classification
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SSE cost function is not suitable for classification:

 Least square loss penalizes ‘too correct’ predictions (that they lie a long

way on the correct side of the decision)

 Least square loss also lack robustness to noise

𝐽 𝒘 =  

𝑖=1

𝑁

𝒘𝑇𝒙 𝑖 − 𝑦 𝑖 2

𝐾 = 2



SSE cost function for classification
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𝒘𝑇𝒙

𝑦 = 1
𝒘𝑇𝒙 − 𝑦 2

1

𝒘𝑇𝒙

𝑦 = −1
𝒘𝑇𝒙 − 𝑦 2

−1

Correct predictions that 

are penalized by SSE

[Bishop]

𝐾 = 2



SSE cost function for classification
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𝐽(𝒘)

 Is it more suitable if we set 𝑓 𝒙;𝒘 = 𝑔 𝒘𝑇𝒙 ?

𝐽 𝒘 =  

𝑖=1

𝑁

sign 𝒘𝑇𝒙 𝑖 − 𝑦 𝑖 2

sign 𝑧 =  
−1, 𝑧 < 0
1, 𝑧 ≥ 0

 𝐽 𝒘 is a piecewise constant function shows the number

of misclassifications

𝐾 = 2

𝒘𝑇𝒙

𝑦 = 1

sign 𝒘𝑇𝒙 − 𝑦 2

Training error incurred in classifying

training samples



Perceptron algorithm
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 Linear classifier

 Two-class: 𝑦 ∈ {−1,1}

 𝑦 = −1 for 𝐶2, 𝑦 = 1 for 𝐶1

 Goal:∀𝑖, 𝒙(𝑖) ∈ 𝐶1 ⇒ 𝒘𝑇𝒙(𝑖) > 0

 ∀𝑖, 𝒙 𝑖 ∈ 𝐶2 ⇒ 𝒘𝑇𝒙 𝑖 < 0

 𝑓 𝒙;𝒘 = sign(𝒘𝑇𝒙)



Perceptron criterion
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𝐽𝑃 𝒘 = −  

𝑖∈ℳ

𝒘𝑇𝒙 𝑖 𝑦 𝑖

ℳ: subset of training data that are misclassified

Many solutions? Which solution among them?



Cost function

20 [Duda, Hart, and Stork, 2002]

𝐽(𝒘) 𝐽𝑃(𝒘)

𝑤0
𝑤1

𝑤0
𝑤1

# of misclassifications

as a cost function

Perceptron’s

cost function

There may be many solutions in these cost functions



Batch Perceptron
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“Gradient Descent” to solve the optimization problem:

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽𝑃(𝒘
𝑡)

𝛻𝒘𝐽𝑃 𝒘 = −  

𝑖∈ℳ

𝒙 𝑖 𝑦 𝑖

Batch Perceptron converges in finite number of steps for linearly

separable data:

Initialize 𝒘
Repeat

𝒘 = 𝒘+ 𝜂 𝑖∈ℳ 𝒙 𝑖 𝑦 𝑖

Until 𝜂  𝑖∈ℳ 𝒙 𝑖 𝑦 𝑖 < 𝜃



Stochastic gradient descent for Perceptron
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 Single-sample perceptron:

 If 𝒙(𝑖) is misclassified:

𝒘𝑡+1 = 𝒘𝑡 + 𝜂𝒙(𝑖)𝑦(𝑖)

 Perceptron convergence theorem: for linearly separable data

 If training data are linearly separable, the single-sample perceptron is

also guaranteed to find a solution in a finite number of steps

Initialize 𝒘, 𝑡 ← 0
repeat

𝑡 ← 𝑡 + 1
𝑖 ← 𝑡 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘 = 𝒘+ 𝒙(𝑖)𝑦(𝑖)

Until all patterns properly classified

Fixed-Increment single sample Perceptron

𝜂 can be set to 1 and 

proof still works



Example
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Perceptron: Example
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Change 𝒘 in a direction 

that corrects the error

[Bishop]



Convergence of Perceptron
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 For data sets that are not linearly separable, the single-sample
perceptron learning algorithm will never converge

[Duda, Hart & Stork, 2002]



Pocket algorithm
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 For the data that are not linearly separable due to noise:

 Keeps in its pocket the best 𝒘 encountered up to now.

Initialize 𝒘
for 𝑡 = 1,… , 𝑇

𝑖 ← 𝑡 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘𝑛𝑒𝑤 = 𝒘+ 𝒙(𝑖)𝑦(𝑖)

if 𝐸𝑡𝑟𝑎𝑖𝑛 𝒘𝑛𝑒𝑤 < 𝐸𝑡𝑟𝑎𝑖𝑛 𝒘 then

𝒘 = 𝒘𝑛𝑒𝑤

end

𝐸𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑁
 

𝑛=1

𝑁

𝑠𝑖𝑔𝑛(𝒘𝑇𝒙(𝑛)) ≠ 𝑦(𝑛)



Linear Discriminant Analysis (LDA)
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 Fisher’s Linear Discriminant Analysis :

 Dimensionality reduction

 Finds linear combinations of features with large ratios of between-

groups scatters to within-groups scatters (as discriminant new

variables)

 Classification

 Predicts the class of an observation 𝒙 by first projecting it to the

space of discriminant variables and then classifying it in this space



Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space
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Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space
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Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space

30

𝒘



LDA Problem

 Problem definition:

 𝐶 = 2 classes

 𝒙(𝑖), 𝑦(𝑖)
𝑖=1

𝑁
training samples with 𝑁1 samples from the first class (𝒞1)

and 𝑁2 samples from the second class (𝒞2)

 Goal: finding the best direction 𝒘 that we hope to enable accurate

classification

 The projection of sample 𝒙 onto a line in direction 𝒘 is 𝒘𝑇𝒙

 What is the measure of the separation between the projected

points of different classes?

31



Measure of Separation in the Projected Direction
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[Bishop]

 Is the direction of the line jointing the class means a good

candidate for 𝒘?



Measure of Separation in the Projected 

Direction
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 The direction of the line jointing the class means is the

solution of the following problem:

 Maximizes the separation of the projected class means

max
𝒘

𝐽 𝒘 = 𝜇1
′ − 𝜇2

′ 2

s. t. 𝒘 = 1

 What is the problem with the criteria considering only

𝜇1
′ − 𝜇2

′ ?

 It does not consider the variances of the classes in the projected direction

𝜇1
′ = 𝒘𝑇 𝝁1 𝝁1 =

 
𝒙(𝑖)∈𝒞1

𝒙(𝑖)

𝑁1

𝜇2
′ = 𝒘𝑇 𝝁2 𝝁2 =

 
𝒙(𝑖)∈𝒞2

𝒙(𝑖)

𝑁2



LDA Criteria
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 Fisher idea: maximize a function that will give

 large separation between the projected class means

 while also achieving a small variance within each class, thereby

minimizing the class overlap.

𝐽 𝒘 =
𝜇1
′ − 𝜇2

′ 2

𝑠1
′2 + 𝑠2

′2



LDA Criteria

 The scatters of the original data are:

𝑠1
2 =  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1
2

𝑠2
2 =  

𝒙(𝑖)∈𝒞2

𝒙 𝑖 − 𝝁2
2

 The scatters of projected data are:

𝑠1
′2 =  

𝒙(𝑖)∈𝒞1

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

𝑠2
′2 =  

𝒙(𝑖)∈𝒞2

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

35



LDA Criteria

36

𝐽 𝒘 =
𝜇1
′ − 𝜇2

′ 2

𝑠1
′2 + 𝑠2

′2

𝜇1
′ − 𝜇2

′ 2 = 𝒘𝑇𝝁1 −𝒘𝑇𝝁2
2

= 𝒘𝑇 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇𝒘

𝑠1
′2 =  

𝒙(𝑖)∈𝒞1

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

= 𝒘𝑇  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1 𝒙 𝑖 − 𝝁1
𝑇

𝒘



LDA Criteria
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𝐽 𝒘 =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘

𝑺𝐵 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇

𝑺𝑊 = 𝑺1 + 𝑺2

𝑺1 =  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1 𝒙 𝑖 − 𝝁1
𝑇

𝑺2 =  

𝒙(𝑖)∈𝒞2

𝒙 𝑖 − 𝝁2 𝒙 𝑖 − 𝝁2
𝑇

scatter matrix=N×covariance matrix

Between-class 

scatter matrix

Within-class 

scatter matrix



LDA Derivation
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LDA Derivation

 𝑺𝐵𝒘 (for any vector 𝒘) points in the same direction as

𝝁1 − 𝝁2:

 Thus, we can solve the eigenvalue problem immediately

If 𝑺𝑊 is full-rank

39

𝑺𝐵𝒘 = 𝜆𝑺𝑊𝒘 𝑺𝑊
−1𝑺𝐵𝒘 = 𝜆𝒘

𝑺𝐵𝒘 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇𝒘 ∝ 𝝁1 − 𝝁2

𝒘 ∝ 𝑺𝑊
−1 𝝁1 − 𝝁2



LDA Algorithm
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 Find 𝝁1 and 𝝁2 as the mean of class 1 and 2 respectively

 Find 𝑺1 and 𝑺2 as scatter matrix of class 1 and 2 respectively

 𝑺𝑊 = 𝑺1 + 𝑺2
 𝑺𝐵 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2

𝑇

 Feature Extraction

 𝒘 = 𝑺𝑤
−1 𝝁1 − 𝝁2 as the eigenvector corresponding to the largest

eigenvalue of 𝑺𝑤
−1𝑺𝑏

 Classification

 𝒘 = 𝑺𝑤
−1 𝝁1 − 𝝁2

 Using a threshold on 𝒘𝑇𝒙, we can classify 𝒙

𝝁2

𝝁1



Multi-class classification
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 Solutions to multi-category problems:

 Extend the learning algorithm to support multi-class:

 A function 𝑓𝑖(𝒙) for each class 𝑖 is found

  𝑦 = argmax
𝑖=1,…,𝑐

𝑓𝑖(𝒙)

 Converting the problem to a set of two-class problems:

𝑥1

𝑥2

𝒙 is assigned to class 𝐶𝑖 if 𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖



Converting multi-class problem to a set of 

two-class problems

42

 “one versus rest” or “one against all”

 For each class 𝐶𝑖, a linear discriminant function that separates

samples of 𝐶𝑖 from all the other samples is found.

 Totally linearly separable

 “one versus one”

 𝑐(𝑐 − 1)/2 linear discriminant functions are used, one to

separate samples of a pair of classes.

 Pairwise linearly separable



Multi-class classification
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 One-vs-all (one-vs-rest)

Class 1:

Class 2:

Class 3:

𝑥2

𝑥2

𝑥1

𝑥2

𝑥1

𝑥1 𝑥2

𝑥1



Multi-class classification
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 One-vs-one

Class 1:

Class 2:

Class 3:

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1



Multi-class classification: ambiguity
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one versus rest one versus one

[Duda, Hart & Stork, 2002]

 Converting the multi-class problem to a set of two-class

problems can lead to regions in which the classification is

undefined



Multi-class classification: linear machine

46

 A discriminant function 𝑓𝑖 𝒙 = 𝒘𝑖
𝑇𝒙 + 𝑤𝑖0 for each class

𝒞𝑖 (𝑖 = 1,… , 𝐾):

 𝒙 is assigned to class 𝒞𝑖 if:

𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖

 Decision surfaces (boundaries) can also be found using

discriminant functions

 Boundary of the contiguous ℛ𝑖 and ℛ𝑗:∀𝒙, 𝑓𝑖 𝒙 = 𝑓𝑗(𝒙)

 𝒘𝑖 −𝒘𝑗

𝑇
𝒙 + 𝑤𝑖0 −𝑤𝑗0 = 0



Multi-class classification: linear machine
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[Duda, Hart & Stork, 2002]



Perceptron: multi-class
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 𝑦 = argmax
𝑖=1,…,𝑐

𝒘𝑖
𝑇𝒙

𝐽𝑃 𝑾 = −  

𝑖∈ℳ

𝒘𝑦 𝑖 −𝒘  𝑦 𝑖

𝑇
𝒙 𝑖

ℳ: subset of training data that are misclassified

ℳ = 𝑖| 𝑦 𝑖 ≠ 𝑦(𝑖)

Initialize 𝑾 = 𝒘1, … ,𝒘𝑐 , 𝑘 ← 0
repeat

𝑘 ← 𝑘 + 1 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘  𝑦 𝑖 = 𝒘  𝑦 𝑖 − 𝒙(𝑖)

𝒘𝑦 𝑖 = 𝒘𝑦 𝑖 + 𝒙(𝑖)

Until all patterns properly classified



Resources
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 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 4.1.


