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Topics

» Discriminant functions

» Linear classifiers

Perceptron

) \JL —> SVM wiill be covered in the later lectures
Fisher

» Multi-class classification



Classification problem
» Given:Training set

labeled set of N input-output pairs D = {(x(i)»y(i))}liil
y €{1,..,K}

» Goal: Given an input X, assign it to one of K classes

» Examples:
Spam filter
Handwritten digit recognition



Discriminant functions

» Discriminant function can directly assign each vector x to a
specific class k

» A popular way of representing a classifier

Many classification methods are based on discriminant functions

» Assumption: the classes are taken to be disjoint
The input space is thereby divided into decision regions

boundaries are called decision boundaries or decision surfaces.



Discriminant Functions

» Discriminant functions: A discriminant function f;(x)
for each class C; (i = 1, ..., K):

X is assigned to class C; if:
fi(x) > f;(x) Vj#i

» Thus, we can easily divide the feature space into K decision
regions
vx, fi(x) > fi(x) Vizi=>x€ER;

R;:Region of the i-th class

» Decision surfaces (or boundaries) can also be found using
discriminant functions

Boundary of the R; and R; separating samples of these two categories:

vx, £i(%) = f,(%)



Discriminant Functions: Two-Category

» Decision surface: f(x) =0

» For two-category problem, we can only find a function f : RY

- R
filx) = f(x)
f2(x) = —f(x)

» First, we explain two-category classification problem and then
discuss the multi-category problem:s.

Binary classification: a target variable y € {0,1} or y € {—1,1}



Linear classifiers

» Decision boundaries are linear in x, or linear in some
given set of functions of x

» Linearly separable data: data points that can be exactly
classified by a linear decision surface.

» Why linear classifier?
Even when they are not optimal, we can use their simplicity

are relatively easy to compute

In the absence of information suggesting otherwise, linear classifiers are an
attractive candidates for initial, trial classifiers.



Two Category

» fOow) =wlix+wy =wy +wyxg +...wgaxy
X = [Xl X> xd]
W= [w; wy ...wy4]
Wy: bias

if wix + wy = 0 then G4
else C,

Decision surface (boundary): w!x + wy = 0

w is orthogonal to every vector lying within the decision surface



if wix +w, = 0 then C;
else C,



Linear classifier: Two Category

» Decision boundary is a (d — 1)-dimensional hyperplane H in
the d-dimensional feature space
The orientation of H is determined by the normal vector [wy, ..., W]

w, determine the location of the surface.

Wo
[lw]|

The normal distance from the origin to the decision surface is

N w
X=x, +r—
lwl| .
w x+w
wix+wy=7|w||=>71= 0
lwl|

l

gives a signed measure of the perpendicular
distance r of the point x from the decision surface

f(x)=0

X2
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Linear boundary: geometry

WTx+W0>O

WTx‘l‘WO:O

WTx+W0<O
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Non-linear decision boundary

» Choose non-linear features

» Classifier still linear in parameters w

—1+xf+x5=0

P(x) = [1,x1,x2,x%,x%,x1x2]

w = [wg, Wy, ..., W] =[—1,0,0,1,1,0]
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if wigp(x) > 0theny =1
else y=-—1



Cost Function for linear classification

» Finding linear classifiers can be formulated as an optimization
problem:

Select how to measure the prediction loss
Based on the training set D = {(x(i),y(i))}?zl, a cost function J(w) is defined

Solve the resulting optimization problem to find parameters:

Find optimal f(x) = f(x; W) where W = argmin J(w)
w

» Criterion or cost functions for classification:

We will investigate several cost functions for the classification problem
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SSE cost function for classification k=2

SSE cost function is not suitable for classification:

Least square loss penalizes ‘too correct’ predictions (that they lie a long
way on the correct side of the decision)

Least square loss also lack robustness to noise

N

J(w) = Z(WTx(i) -y (i))i

=1

14 -8




K =2

SSE cost function for classification
(whx — y)? =1

1 wl

-
-
-
-

X

Correct predictions that
are penalized by SSE (wlx —y)? .
1 y = —

s
AN
}-:]

A%
w

15



SSE cost function for classification k=2

» Is it more suitable if we set f(x;w) = g(w!x)?

N
Jw) = ) (sign(w™x®) — y®)*
2

(sign(w’x) — y)*

y=1

. —1, z<0
sign(z) = 1 z=>0 wlx

» J(W) is a piecewise constant function shows the number
of misclassifications

Training error incurred in classifying T
training samples
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Perceptron algorithm

» Linear classifier
» Two-class:y € {—1,1}
y=_1forC2, y=1f0rC1

» Goal: Vi, xM € ¢; =2 wlx® >0
vi,xD e, =2wlx® <0

» f(x;w) = sign(w!x)
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Perceptron criterion

o == 3 w0y

iEM
M : subset of training data that are misclassified

Many solutions? Which solution among them?
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Cost function

J(w)

AAA WAV

1
=

# of misclassifications Perceptron’s
as a cost function cost function

There may be many solutions in these cost functions

20 [Duda, Hart, and Stork, 2002]



Batch Perceptron

“Gradient Descent” to solve the optimization problem:

witt = wh —nl,Jp(w")

) = = 3 200
LEM
Batch Perceptron converges in finite number of steps for linearly
separable data:

Initialize w
Repeat

wW=w+ n ZiEM x(i)y(i)
Until n ¥;c5 xPy® < 0
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Stochastic gradient descent for Perceptron

» Single-sample perceptron:

If x( is misclassified:
witl = wt 4+ px®y®

» Perceptron convergence theorem: for linearly separable data

If training data are linearly separable, the single-sample perceptron is
also guaranteed to find a solution in a finite number of steps

Fixed-Increment single sample Perceptron

Initialize w, t < 0

repeat
1 can be set to | and Pt<—t+1
proof still works 5 ,
[ < tmodN

if x() is misclassified then
22 Until all patterns properly classified



Example
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Perceptron:

05

Change w in a direction

that corrects the erro

-0.5¢F
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[Bishop]
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Convergence of Perceptron

SO
N

5 TR

RrrhhhRhhthaaesees

T

TR
P
[ 5

2

solution
region

4
[Duda, Hart & Stork, 2002]

» For data sets that are not linearly separable, the single-sample
perceptron learning algorithm will never converge
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Pocket algorithm

» For the data that are not linearly separable due to noise:

Keeps in its pocket the best W encountered up to now.

Initialize w
fort=1,..,T
[ «tmodN
if x(Y) is misclassified then
whew — w 4+ x(i)y(i)
if Etrqin (w'eW) < Etrain(W) then

w = whew
end
1 N
Etrain(W) = 5 Z [sign(wTx™) = y ]
n=1
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Linear Discriminant Analysis (LDA)

» Fisher’s Linear Discriminant Analysis :

Dimensionality reduction

Finds linear combinations of features with large ratios of between-
groups scatters to within-groups scatters (as discriminant new
variables)

Classification

Predicts the class of an observation x by first projecting it to the
space of discriminant variables and then classifying it in this space
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Good Projection for Classification

» What is a good criterion?

Separating different classes in the projected space

28



Good Projection for Classification

» What is a good criterion?

Separating different classes in the projected space
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Good Projection for Classification

» What is a good criterion?

Separating different classes in the projected space
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LDA Problem

» Problem definition:

C = 2 classes

{(x(i),y(i))}livzl training samples with N; samples from the first class (C;)
and N, samples from the second class (C,)

Goal: finding the best direction w that we hope to enable accurate
classification

» The projection of sample x onto a line in direction w is w! x

» What is the measure of the separation between the projected
points of different classes!?

31



Measure of Separation in the Projected Direction

» Is the direction of the line jointing the class means a good
candidate for w!

.
4 - 4
ad
.P o - I"-l . :
) ? e C TP
.: "éo.-h : i »
L .';':}%u% L
LY ! g
M WL e Ty
2F of Qi\,m,_a.",. %e = g ol

' f-:é {-f‘if:i;' . .

_\\\ 9 ',' fi " :
'. /
)/
.,

-2 2 6 [BIShOP] -2 2 6

32



Measure of Separation in the Projected
Direction

» The direction of the line jointing the class means is the
solution of the following problem:

Maximizes the separation of the projected class means

max ] (W) = (1} — })?
s.t.|lw]l =1

Z x(i)

Q)
1 T __ —x\Yec
Hi =W Hq i = Nll
: (@)
A _ Zx(‘)eczx
Ha =W U3 Ky = N,

» What is the problem with the criteria considering only
1 — pa|?

It does not consider the variances of the classes in the projected direction
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LDA Criteria

» Fisher idea: maximize a function that will give
large separation between the projected class means

while also achieving a small variance within each class, thereby
minimizing the class overlap.

|y — psl?
si% + s5?

Jw) =
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LDA Criteria

» The scatters of the original data are:

9]
NN

I
bY

|

=
ol
_N

» The scatters of projected data are:

5% = z (wlx® — wTul)z

x(Wecy

552 = z (wTx® — wTul)Z

x(l) ECZ
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LDA Criteria

|1y — usl*
w) =
J(w) e

\uy — usl% = lwhuy —whn,|?

=w (U — ) (uy — p)'w

s? = Z (wTx® — wTul)z

x(l)Eel

— WT< 2 (2 — p1,)(x® — Mf) W

x(i)E(;’l
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LDA Criteria

wi's,w

Between-class
scatter matrix

< Sp=(uy —pu)(puy — p)"

Wlthln-class‘ Sy =S, +S,
scatter matrix

S, = Z (x® — ) (x® — ﬂl)T

x(l) 661

S, = Z (x® — p,) (xD — ”Z)T

x(l) 662

37 scatter matrix=NXcovariance matrix



LDA Derivation

w'S;w

w'S, w

J(w)=
W S,W . oW’ S, W
BIWw) _ ow MWW
ow (W' S, w)
oJ(w)

W—O:SBWIASWW
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LDA Derivation

If S, is full-rank
SpW = ASyW ) SIS w = Aw

» Syw (for any vector w) points in the same direction as
"1 — Ha:

Sgw = (g — pp) (g — p)"'w o (g — pp)

w o Sy (g — pp)

» Thus, we can solve the eigenvalue problem immediately

39



LDA Algorithm

Find i, and u, as the mean of class | and 2 respectively

v

» Find §; and §, as scatter matrix of class | and 2 respectively
4 SW — Sl + Sz
Sp = (1 — p2) (g — )"

v

» Feature Extraction

w = S, (uy — 1) as the eigenvector corresponding to the largest
eigenvalue of S;,'S,

» Classification o u¥
_ ¢-1 ® "Oe
w =5, (U — 1) o ®
Using a threshold on w’ x, we can classify x o e
. e e
o
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» Solutions to multi-category problems: o R

7

X1

Multi-class classification

Extend the learning algorithm to support multi-class:
A function f;(x) for each class i is found
y = argmax f;(x) X is assigned to class C; if f,(x) > fj(x) Vj #i

i=1,...c

Converting the problem to a set of two-class problems:

41



Converting multi-class problem to a set of
two-class problems

» “one versus rest” or “one against all”

For each class Cj, a linear discriminant function that separates
samples of C; from all the other samples is found.

Totally linearly separable

» “one versus one”’

c(c —1)/2 linear discriminant functions are used, one to
separate samples of a pair of classes.

Pairwise linearly separable

42



Multi-class classification

» One-vs-all (one-vs-rest)

A \ § /
A 8 XX X
O O

Og)O > T

A Class |:
O Class 2:
X Class 3:
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Multi-class classification

» One-vs-one

A
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A Class |:

O Class 2:
X Class 3:
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Multi-class classification: ambiguity

» Converting the multi-class problem to a set of two-class
problems can lead to regions in which the classification is
undefined

ambiguous
region

not iy

oy

not @ | 02

one versus rest one versus one

[Duda, Hart & Stork, 2002]
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Multi-class classification: linear machine

» A discriminant function f;(x) = w} x + w;, for each class
Ci (l — 1, ,K)

X is assigned to class C; if:
fix) > fi(x) Vj#i

» Decision surfaces (boundaries) can also be found using
discriminant functions
Boundary of the contiguous R; and R;: Vx, f;(x) = f;(x)

T
(Wl' — ])x+(WlO_Wjo)=O
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Multi-class classification: linear machine

[Duda, Hart & Stork, 2002]



Perceptron: multi-class

A T
Yy = a}‘gmax Wi X
1=1,...c

T
Jp(W) = — 2 (Wy(o - Wy(i)) x®
iEM
M : subset of training data that are misclassified
M = {i|37(i) -+ y(i)}

Initialize W = [wq, ..., w_ ],k < 0
repeat
k < (k+1) modN
if x(V) is misclassified then
S = L (D)
Wj}(l) Wy(l) x()
P— , l
W,m = W0 + x
Until all patterns properly classified
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Resources

» C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter 4.1.
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