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Unsupervised learning
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 Clustering: partitioning of data into groups of similar

data points.

 Density estimation

 Parametric & non-parametric density estimation

 Dimensionality reduction: data representation using a

smaller number of dimensions while preserving (perhaps

approximately) some properties of the data.



Clustering: Definition
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 We have a set of unlabeled data points 𝒙(𝑖)
𝑖=1

𝑁
and we intend

to find groups of similar objects (based on the observed

features)

 high intra-cluster similarity

 low inter-cluster similarity

𝑥1

𝑥2



Clustering: Another Definition
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 Density-based definition:

 Clusters are regions of high density that are separated from

one another by regions of low density

𝑥1

𝑥2



Clustering Purpose
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 Preprocessing stage to index, compress, or reduce the data

 Representing high-dimensional data in a low-dimensional space

(e.g., for visualization purposes).

 As a tool to understand the hidden structure in data or

to group them

 To gain insight into the structure of the data prior to classifier design

 To group the data when no label is available



Clustering Applications
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 Information retrieval (search and browsing)
 Cluster text docs or images based on their content

 Cluster groups of users based on their access patterns on

webpages



Clustering of docs
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 Google news



Clustering Applications
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 Information retrieval (search and browsing)
 Cluster text docs or images based on their content

 Cluster groups of users based on their access patterns on

webpages

 Cluster users of social networks by interest

(community detection).



Social Network: Community Detection
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Clustering Applications

11

 Information retrieval (search and browsing)
 Cluster text docs or images based on their content

 Cluster groups of users based on their access patterns on

webpages

 Cluster users of social networks by interest (community

detection).

 Bioinformatics
 cluster similar proteins together (similarity wrt chemical

structure and/or functionality etc)

 or cluster similar genes according to microarray data



Gene clustering
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 Microarrays measures the expression of all genes

 Clustering genes can help determine new functions for

unknown genes



Clustering Applications
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 Information retrieval (search and browsing)

 Cluster text docs or images based on their content

 Cluster groups of users based on their access patterns on webpages

 Cluster users of social networks by interest (community
detection).

 Bioinformatics

 Cluster similar proteins together (similarity wrt chemical structure
and/or functionality etc) or similar genes according to microarray
data

 Market segmentation

 Clustering customers based on the their purchase history and their
characteristics

 Image segmentation

 Many more applications
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Hierarchical Partitional

Categorization of Clustering Algorithms

Partitional algorithms: Construct various partitions and then evaluate

them by some criterion

Hierarchical algorithms: Create a hierarchical decomposition of the set of

objects using some criterion



Clustering methods we will discuss
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 Objective based clustering

 K-means

 EM-style algorithm for clustering for mixture of Gaussians (in

the next lecture)

 Hierarchical clustering



Partitional Clustering
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 𝒳 = 𝒙(𝑖)
𝑖=1

𝑁

 𝒞 = {𝒞1, 𝒞2, … , 𝒞𝐾}

 ∀𝑗, 𝒞𝑗 ≠ ∅

  𝑗=1
𝐾 𝒞𝑗 = 𝒳

 ∀𝑖, 𝑗, 𝒞𝑖 ∩ 𝒞𝑗 = ∅ (disjoint partitioning for hard clustering)

 Since the output is only one set of clusters the user

has to specify the desired number of clusters K.

Hard clustering: Each data can belong to one cluster only

Nonhierarchical, each instance is placed in 

exactly one of K non-overlapping clusters. 



Partitioning Algorithms: Basic Concept

 Construct a partition of a set of 𝑁 objects into a set

of 𝐾 clusters

 The number of clusters 𝐾 is given in advance

 Each object belongs to exactly one cluster in hard

clustering methods

 K-means is the most popular partitioning algorithm
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Objective Based Clustering
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 Input:A set of 𝑁 points, also a distance/dissimilarity measure

 Output: a partition of the data.

 k-median: find center pts 𝐜1, 𝐜2, … , 𝐜𝐾 to minimize

 

𝑖=1

𝑁

min
𝑗∈1,…,𝐾

𝑑(𝒙 𝑖 , 𝒄𝑗)

 k-means: find center pts 𝐜1, 𝐜2, … , 𝐜𝐾 to minimize

 

𝑖=1

𝑁

min
𝑗∈1,…,𝐾

𝑑2(𝒙 𝑖 , 𝒄𝑗)

 k-center: find partition to minimize the maxim radius



Distance Measure
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 Let 𝑂1 and 𝑂2 be two objects from the universe of

possible objects. The distance (dissimilarity) between 𝑂1
and 𝑂2 is a real number denoted by 𝑑(𝑂1, 𝑂2)

 Specifying the distance 𝑑(𝒙, 𝒙′) between pairs (𝒙, 𝒙′).

 E.g., # keywords in common, edit distance

 Example: Euclidean distance in the space of features



K-means Clustering

 Input: a set 𝒙 1 , … , 𝒙 𝑁 of data points (in a 𝑑-dim feature
space) and an integer 𝐾

 Output: a set of 𝐾 representatives 𝒄1, 𝒄2, … , 𝒄𝐾 ∈ ℝ
𝑑 as the

cluster representatives
 data points are assigned to the clusters according to their distances to
𝒄1, 𝒄2, … , 𝒄𝐾
 Each data is assigned to the cluster whose representative is nearest to it

 Objective: choose 𝒄1, 𝒄2, … , 𝒄𝐾 to minimize:

 

𝑖=1

𝑁

min
𝑗∈1,…,𝐾

𝑑2(𝒙 𝑖 , 𝒄𝑗)

20



Euclidean k-means Clustering 
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 Input: a set 𝒙 1 , … , 𝒙 𝑁 of data points (in a 𝑑-dim feature
space) and an integer 𝐾

 Output: a set of 𝐾 representatives 𝒄1, 𝒄2, … , 𝒄𝐾 ∈ ℝ
𝑑 as the

cluster representatives
 data points are assigned to the clusters according to their distances to
𝒄1, 𝒄2, … , 𝒄𝐾
 Each data is assigned to the cluster whose representative is nearest to it

 Objective: choose 𝒄1, 𝒄2, … , 𝒄𝐾 to minimize:

 

𝑖=1

𝑁

min
𝑗∈1,…,𝐾

𝒙 𝑖 − 𝒄𝑗
2

each point assigned to its closest cluster representative 



Euclidean k-means Clustering: 

Computational Complexity 
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 To find the optimal partition, we need to exhaustively

enumerate all partitions

 In how many ways can we assign 𝑘 labels to 𝑁 observations?

 NP hard: even for 𝑘 = 2 or 𝑑 = 2

 For k=1:min
𝒄
 𝑖=1
𝑁 𝒙 𝑖 − 𝒄

2

 𝒄 = 𝝁 =
1

𝑁
 𝑖=1
𝑁 𝒙 𝑖

 For 𝑑 = 1, dynamic programming in time 𝑂(𝑁2𝐾).



Common Heuristic in Practice: The Lloyd’s 

method 
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 Input:A set 𝒳 of 𝑁 datapoints 𝒙 1 , … , 𝒙 𝑁 in ℝ𝑑

 Initialize centers 𝒄1, 𝒄2, … , 𝒄𝐾 ∈ ℝ
𝑑 in any way.

 Repeat until there is no further change in the cost.

 For each 𝑗:𝒞𝑗 ← {𝒙 ∈ 𝒳|where 𝒄𝑗 is the closest center to 𝒙}

 For each 𝑗: 𝒄1←mean of members of 𝒞𝑗

Holding centers 𝒄1, 𝒄2, … , 𝒄𝐾 fixed

Find optimal assignments 𝒞1, … , 𝒞𝐾 of data points to clusters 

Holding cluster assignments 𝒞1, … , 𝒞𝐾 fixed

Find optimal centers 𝒄1, 𝒄2, … , 𝒄𝐾



K-means Algorithm (The Lloyd’s method) 
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Select 𝑘 random points 𝒄1, 𝒄2, … 𝒄𝑘 as clusters’ initial centroids.

Repeat until converges (or other stopping criterion):

for i=1 to N do:

Assign 𝒙(𝑖) to the closet cluster and thus 𝒞𝑗 contains all 

data that are closer to 𝒄𝑗 than to anyother cluster

for j=1 to k do

𝒄𝑗 =
1

𝒞𝑗
 
𝒙(𝑖)∈𝒞𝑗
𝒙(𝑖)

Assign data based on current centers 

Re-estimate centers based on current assignment 
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[Bishop]

Assigning data to 

clusters
Updating means



Intra-cluster similarity
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 k-means optimizes intra-cluster similarity:

𝐽(𝒞) = 
𝑗=1

𝐾

 
𝒙(𝑖)∈𝒞𝑗

𝒙 𝑖 – 𝒄𝑗
2

𝒄𝑗 =
1

𝒞𝑗
 
𝒙(𝑖)∈𝒞𝑗

𝒙(𝑖)

 
𝒙(𝑖)∈𝒞𝑗

𝒙 𝑖 – 𝒄𝑗
2
=
1

2 𝒞𝑗
 
𝒙(𝑖)∈𝒞𝑗
 
𝒙(𝑖
′)∈𝒞𝑗
𝒙 𝑖 – 𝒙 𝑖

′ 2

the average distance to members of the same cluster 



K-means: Convergence

 It always converges.

 Why should the K-means algorithm ever reach a state in which

clustering doesn’t change.

 Reassignment stage monotonically decreases 𝐽 since each vector is

assigned to the closest centroid.

 Centroid update stage also for each cluster minimizes the sum of

squared distances of the assigned points to the cluster from its center.

Sec. 16.4

27

After E-step

After M-step

[Bishop]



Local optimum

28

 It always converges

 but it may converge at a local optimum that is different

from the global optimum

 may be arbitrarily worse in terms of the objective score.



Local optimum
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 It always converges

 but it may converge at a local optimum that is different

from the global optimum

 may be arbitrarily worse in terms of the objective score.



Local optimum
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 It always converges

 but it may converge at a local optimum that is different

from the global optimum

 may be arbitrarily worse in terms of the objective score.

Local optimum: every point is assigned to its nearest center and 

every center is the mean value of its points. 



K-means: Local Minimum Problem

The obtained ClusteringOptimal Clustering

Original Data

31



The Lloyd’s method: Initialization
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 Initialization is crucial (how fast it converges, quality of

clustering)

 Random centers from the data points

 Multiple runs and select the best ones

 Initialize with the results of another method

 Select good initial centers using a heuristic

 Furthest traversal

 K-means ++ (works well and has provable guarantees)



Another Initialization Idea: Furthest Point 

Heuristic

33

 Choose 𝒄1 arbitrarily (or at random).

 For 𝑗 = 2,… , 𝐾

 Select 𝒄𝑗 among datapoints 𝒙(1), … , 𝒙(𝑁) that is farthest from

previously chosen 𝒄1, … , 𝒄𝑗−1



Another Initialization Idea: Furthest Point 

Heuristic

34

 It is sensitive to outliers



K-means++ Initialization: D2 sampling 

[AV07] 
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 Combine random initialization and furthest point initialization ideas

 Let the probability of selection of the point be proportional to the
distance between this point and its nearest center.
 probability of selecting of 𝒙 is proportional to 𝐷2 𝒙 = min

𝑘<𝑗
𝒙 − 𝒄𝑘

2.

 Choose 𝒄1 arbitrarily (or at random).

 For 𝑗 = 2,… , 𝐾
 Select 𝒄𝑗 among data points 𝒙(1), … , 𝒙(𝑁) according to the distribution:

Pr(𝒄𝑗 = 𝒙
(𝑖)) ∝ min

𝑘<𝑗
𝒙 𝑖 − 𝒄𝑘

2

 Theorem: K-means++ always attains an 𝑂(log 𝑘) approximation to
optimal k-means solution in expectation.



How Many Clusters?

 Number of clusters 𝑘 is given in advance in the k-means algorithm

 However, finding the “right” number of clusters is a part of the problem

 Tradeoff between having better focus within each cluster and having
too many clusters

 Hold-out validation/cross-validation on auxiliary task (e.g.,
supervised learning task).

 Optimization problem: penalize having lots of clusters

 some criteria can be used to automatically estimate k

 Penalize the number of bits you need to describe the extra parameter

𝐽′(𝒞) = 𝐽(𝒞) + |𝒞| × log𝑁

36



How Many Clusters?
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After E-step

After M-step

 Heuristic: Find large gap between 𝑘 − 1-means cost and 𝑘-
means cost.
 “knee finding” or “elbow finding”.



K-means: Advantages and disadvantages
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 Strength

 It is a simple method

 Relatively efficient: 𝑂(𝑡𝐾𝑁𝑑) , where 𝑡 is the number of
iterations.

 Usually 𝑡 ≪ 𝑛.

 K-means typically converges quickly

 Weakness

 Need to specify K, the number of clusters, in advance

 Often terminates at a local optimum.

 Not suitable to discover clusters with arbitrary shapes

 Works for numerical data.What about categorical data?

 Noise and outliers can be considerable trouble to K-means



k-means Algorithm: Limitation

 In general, k-means is unable to find clusters of arbitrary

shapes, sizes, and densities

 Except to very distant clusters

39



K-means: Vector Quantization
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 Data Compression

 Vector quantization: construct a codebook using k-means

 cluster means as prototypes representing examples assigned to

clusters.

𝑘 = 3 𝑘 = 5 𝑘 = 15



K-means
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 K-means was proposed near 60 years ago

 thousands of clustering algorithms have been published since

then

 However, K-means is still widely used.

 This speaks to the difficulty in designing a general purpose

clustering algorithm and the ill-posed problem of

clustering.

A.K. Jian, Data Clustering: 50 years beyond k-means,2010.



Hierarchical Clustering
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 Notion of a cluster can be ambiguous?

 How many clusters?

 Hierarchical Clustering: Clusters contain sub-clusters and sub-

clusters themselves can have sub-sub-clusters, and so on

 Several levels of details in clustering

 A hierarchy might be more natural.

 Different levels of granularity
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Hierarchical Partitional

AgglomerativeDivisive

Categorization of Clustering Algorithms



Hierarchical Clustering

44

 Agglomerative (bottom up):

 Starts with each data in a separate cluster

 Repeatedly joins the closest pair of clusters, until there is only one

cluster (or other stopping criteria).

 Divisive (top down):

 Starts with the whole data as a cluster

 Repeatedly divide data in one of the clusters until there is only one data

in each cluster (or other stopping criteria).



Example

 Hierarchical Agglomerative Clustering (HAC)

45

765 3241

7

6

5
4

3

2

1

Height represents the 

distance at which the 

merge occurs 



Distances between Cluster Pairs

 Many variants to defining distances between pair of

clusters

 Single-link

 Minimum distance between different pairs of data

 Complete-link

 Maximum distance between different pairs of data

 Centroid

 Distance between centroids (centers of gravity)

 Average-link

 Average distance between pairs of elements

46



Distances between Cluster Pairs
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Single-link Complete-link

Ward’s Average-link



Single Linkage

 The minimum of all pairwise distances between points in the

two clusters:

𝑑𝑖𝑠𝑡𝑆𝐿 𝒞𝑖 , 𝒞𝑗 = min
𝒙∈𝒞𝑖, 𝒙

′∈𝒞𝑗
𝑑𝑖𝑠𝑡(𝒙, 𝒙′)

 “straggly” (long and thin) clusters due to chaining effect.

48



Single-Link
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765 3241

7

6

5
4

3
2

1

keep max bridge length as small as possible. 



Complete Linkage

 The maximum of all pairwise distances between points in the

two clusters:

𝑑𝑖𝑠𝑡𝐶𝐿 𝒞𝑖 , 𝒞𝑗 = max
𝒙∈𝒞𝑖, 𝒙

′∈𝒞𝑗
𝑑𝑖𝑠𝑡(𝒙, 𝒙′)

 Makes “tighter,” spherical clusters typically preferable.

50



Complete Link
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7

6

5
4

3
2

1

765 3241

keep max diameter as small as possible. 



Ward’s method
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 The distances between centers of the two clusters

(weighted to consider sizes of clusters too):

𝑑𝑖𝑠𝑡𝑊𝑎𝑟𝑑 𝒞𝑖 , 𝒞𝑗 =
𝒞𝑖 𝒞𝑗

𝒞𝑖 + 𝒞𝑗
𝑑𝑖𝑠𝑡(𝒄𝑖 , 𝒄𝑗)

 Merge the two clusters such that the increase in k-means

cost is as small as possible.

 Works well in practice.



Computational Complexity

 In the first iteration, all HAC methods compute similarity of all

pairs of 𝑁 individual instances which is O(𝑁2) similarity

computation.

 In each 𝑁 − 2 merging iterations, compute the distance

between the most recently created cluster and all other

existing clusters.

 if done naively O 𝑁3 but if done more cleverly O 𝑁2 log𝑁

53



Dendrogram: Hierarchical Clustering

54

 Clustering obtained by cutting the dendrogram at a desired

level

 Cut at a pre-specified level of similarity

 where the gap between two successive combination similarities is largest

 select the cutting point that produces K clusters

Where to “cut” the dendrogram

is user-determined.

7653241



K-means vs. Hierarchical

 Time cost:

 K-means is usually fast while hierarchical methods do not scale well

 Human intuition

 Hierarchical structure maps nicely onto human intuition for some
domains and provides more natural output

 Local minimum problem

 It is very common for k-means

 However, hierarchical methods like any heuristic search algorithms
also suffer from local optima problem.

 Since they can never undo what was done previously

 Choosing of the number of clusters

 There is no need to specify the number of clusters in advance for
hierarchical methods
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