Clustering

CE-717: Machine Learning Sharif University of Technology Spring 2016

Soleymani

Outline

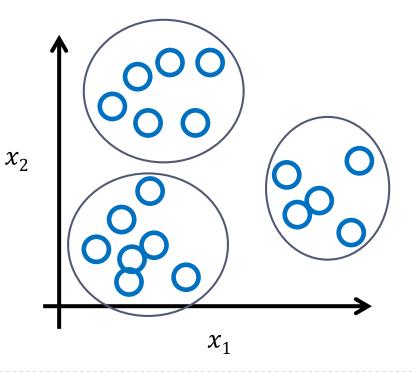
- Clustering Definition
- Clustering main approaches
 - Partitional (flat)
 - Hierarchical
- Clustering validation

Unsupervised learning

- Clustering: partitioning of data into groups of similar data points.
- Density estimation
 - Parametric & non-parametric density estimation
- Dimensionality reduction: data representation using a smaller number of dimensions while preserving (perhaps approximately) some properties of the data.

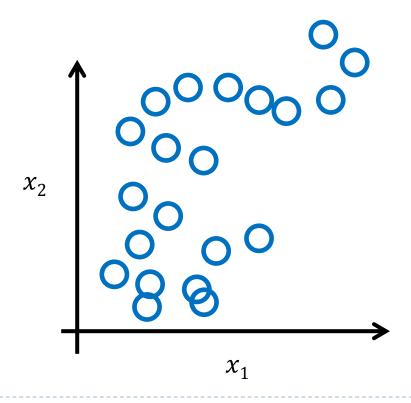
Clustering: Definition

- We have a set of unlabeled data points $\{x^{(i)}\}_{i=1}^{N}$ and we intend to find groups of similar objects (based on the observed features)
 - high intra-cluster similarity
 - Iow inter-cluster similarity



Clustering: Another Definition

- Density-based definition:
 - Clusters are regions of high density that are separated from one another by regions of low density



• **Preprocessing stage** to index, compress, or reduce the data

- Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).
- As a tool to understand the hidden structure in data or to group them
 - To gain insight into the structure of the data prior to classifier design
 - To group the data when no label is available

Clustering Applications

- Information retrieval (search and browsing)
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages

Clustering of docs

Google news

8

News

Top Stories John Glenn Aleppo Donald Trump Oakland Raiders Spider-Man: Homecoming Heisman Trophy Park Geun-hye Ghana La La Land

Alabama

News near you

World

U.S.

Business

Technology

Entertainment

Sports

U.S. edition 🔻

Modern 👻

Spider-Man: Homecoming

Your 'Spider-Man: Hom CNET - 3 hours ago 'Spider-Man: Homecoming' drop 'Spider-Man: Homecoming' — 7 'Spider-Man: Homecoming 2,' 'Ba Highly Cited: Exclusive photo: Spider-Man: Every Plot Point and E

Marvel drops 'Spider-Man: Homecoming' trailer

Los Angeles Times - 8 hours ago

The first trailer for the Marvel and Sony Pictures Entertainme

'Spider-Man: Homecoming' First Trailer: Peter F Us Weekly - 8 hours ago

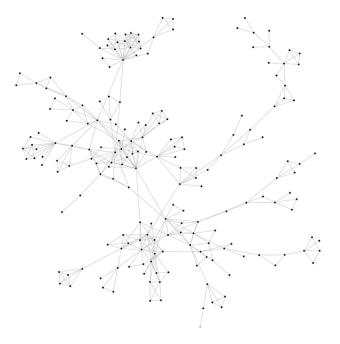
By Megan French. Error loading playlist: Playlist load error: I spidey senses tingling with excitement.

Spider-Man: Homecoming: Tom Ho The Guardian - 19 hours ago

Clustering Applications

- Information retrieval (search and browsing)
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- Cluster users of social networks by interest (community detection).

Social Network: Community Detection



Clustering Applications

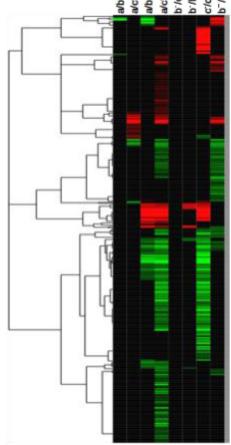
- Information retrieval (search and browsing)
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- Cluster users of social networks by interest (community detection).

Bioinformatics

- cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)
- or cluster similar genes according to microarray data

Gene clustering

- Microarrays measures the expression of all genes
- Clustering genes can help determine new functions for unknown genes



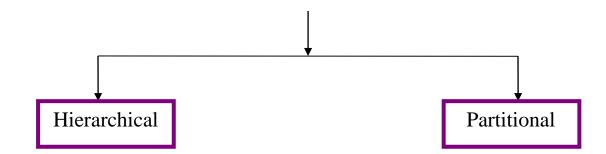
Clustering Applications

- Information retrieval (search and browsing)
 - Cluster text docs or images based on their content
 - Cluster groups of users based on their access patterns on webpages
- Cluster users of social networks by interest (community detection).
- Bioinformatics
 - Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc) or similar genes according to microarray data

Market segmentation

- Clustering customers based on the their purchase history and their characteristics
- Image segmentation
- Many more applications

Categorization of Clustering Algorithms



Partitional algorithms: Construct various partitions and then evaluate them by some criterion

Hierarchical algorithms: Create a hierarchical decomposition of the set of objects using some criterion

Clustering methods we will discuss

- Objective based clustering
 - K-means
 - EM-style algorithm for clustering for mixture of Gaussians (in the next lecture)
- Hierarchical clustering

Partitional Clustering

X = {x⁽ⁱ⁾}^N_{i=1}
C = {C₁, C₂, ..., C_K}
∀j, C_j ≠ Ø Nonhierarchical, each instance is placed in exactly one of K non-overlapping clusters.
U^K_{j=1} C_j = X exactly one of K non-overlapping clusters.
∀i, j, C_i ∩ C_j = Ø (disjoint partitioning for hard clustering)

Hard clustering: Each data can belong to one cluster only

Since the output is only one set of clusters the user has to specify the desired number of clusters K.

Partitioning Algorithms: Basic Concept

- Construct a partition of a set of N objects into a set of K clusters
 - The number of clusters K is given in advance
 - Each object belongs to exactly one cluster in hard clustering methods
- K-means is the most popular partitioning algorithm

Objective Based Clustering

- Input: A set of N points, also a distance/dissimilarity measure
- **Output**: a partition of the data.
- **k-median**: find center pts $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize $\sum_{i=1}^N \min_{j \in 1, \dots, K} d(\mathbf{x}^{(i)}, \mathbf{c}_j)$
- **k-means**: find center pts $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K$ to minimize $\sum_{i=1}^N \min_{j \in 1, \dots, K} d^2(\mathbf{x}^{(i)}, \mathbf{c}_j)$
- **k-center**: find partition to minimize the maxim radius

Distance Measure

- Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $d(O_1, O_2)$
- Specifying the distance d(x, x') between pairs (x, x').
 - E.g., # keywords in common, edit distance
 - Example: Euclidean distance in the space of features

K-means Clustering

- Input: a set $x^{(1)}, ..., x^{(N)}$ of data points (in a *d*-dim feature space) and an integer *K*
- **Output**: a set of K representatives $c_1, c_2, ..., c_K \in \mathbb{R}^d$ as the cluster representatives
 - data points are assigned to the clusters according to their distances to c_1, c_2, \dots, c_K
 - Each data is assigned to the cluster whose representative is nearest to it

• **Objective**: choose
$$\boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_K$$
 to minimize:

$$\sum_{i=1}^N \min_{j \in 1, \dots, K} d^2(\boldsymbol{x}^{(i)}, \boldsymbol{c}_j)$$

Euclidean k-means Clustering

- Input: a set $x^{(1)}, ..., x^{(N)}$ of data points (in a *d*-dim feature space) and an integer *K*
- **Output**: a set of K representatives $c_1, c_2, ..., c_K \in \mathbb{R}^d$ as the cluster representatives
 - data points are assigned to the clusters according to their distances to c_1, c_2, \dots, c_K

representative

• Each data is assigned to the cluster whose representative is nearest to it

• **Objective**: choose
$$\boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_K$$
 to minimize:

$$\sum_{i=1}^{N} \min_{\substack{j \in 1, \dots, K}} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{c}_j \right\|^2$$
each point assigned to its closest cluster

Euclidean k-means Clustering: Computational Complexity

- To find the optimal partition, we need to exhaustively enumerate all partitions
 - In how many ways can we assign k labels to N observations?
- NP hard: even for k = 2 or d = 2

• For k=I:
$$\min_{c} \sum_{i=1}^{N} || \mathbf{x}^{(i)} - \mathbf{c} ||^2$$

• $\mathbf{c} = \mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$

For d = 1, dynamic programming in time $O(N^2K)$.

Common Heuristic in Practice: The Lloyd's method

• Input: A set \mathcal{X} of N datapoints $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)}$ in \mathbb{R}^d

Initialize centers $c_1, c_2, ..., c_K \in \mathbb{R}^d$ in any way.

Repeat until there is no further change in the cost.

For each $j: C_j \leftarrow \{x \in \mathcal{X} | \text{where } c_j \text{ is the closest center to } x\}$

For each $j: c_1 \leftarrow$ mean of members of C_j

Holding centers $c_1, c_2, ..., c_K$ fixed Find optimal assignments $C_1, ..., C_K$ of data points to clusters

> Holding cluster assignments C_1, \ldots, C_K fixed Find optimal centers c_1, c_2, \ldots, c_K

Select k random points $c_1, c_2, ..., c_k$ as clusters' initial centroids. Repeat until converges (or other stopping criterion): for i=1 to N do: Assign $x^{(i)}$ to the closet cluster and thus C_j contains all data that are closer to c_j than to anyother cluster for j=1 to k do $c_j = \frac{1}{|C_j|} \sum_{x^{(i)} \in C_j} x^{(i)}$

Assign data based on current centers

Re-estimate centers based on current assignment



Intra-cluster similarity

k-means optimizes intra-cluster similarity:

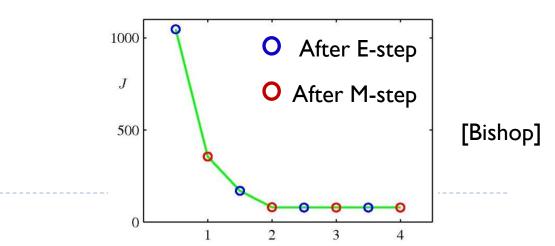
$$J(\mathcal{C}) = \sum_{j=1}^{K} \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{c}_j \right\|^2$$
$$\boldsymbol{c}_j = \frac{1}{|\mathcal{C}_j|} \sum_{\boldsymbol{x}^{(i)} \in \mathcal{C}_j} \boldsymbol{x}^{(i)}$$

$$\sum_{\boldsymbol{x}^{(i)}\in\mathcal{C}_j} \left\|\boldsymbol{x}^{(i)}-\boldsymbol{c}_j\right\|^2 = \frac{1}{2|\mathcal{C}_j|} \sum_{\boldsymbol{x}^{(i)}\in\mathcal{C}_j} \sum_{\boldsymbol{x}^{(i')}\in\mathcal{C}_j} \left\|\boldsymbol{x}^{(i)}-\boldsymbol{x}^{(i')}\right\|^2$$

the average distance to members of the same cluster

K-means: Convergence

- It always converges.
- Why should the K-means algorithm ever reach a state in which clustering doesn't change.
 - Reassignment stage monotonically decreases J since each vector is assigned to the closest centroid.
 - Centroid update stage also for each cluster minimizes the sum of squared distances of the assigned points to the cluster from its center.

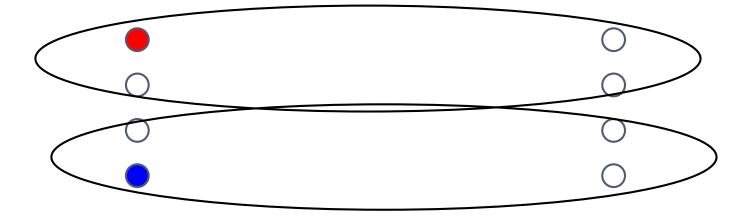


Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - > may be arbitrarily worse in terms of the objective score.

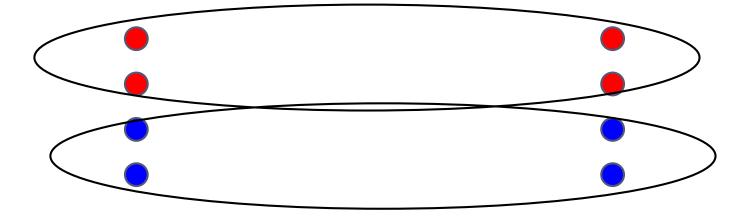
Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - > may be arbitrarily worse in terms of the objective score.



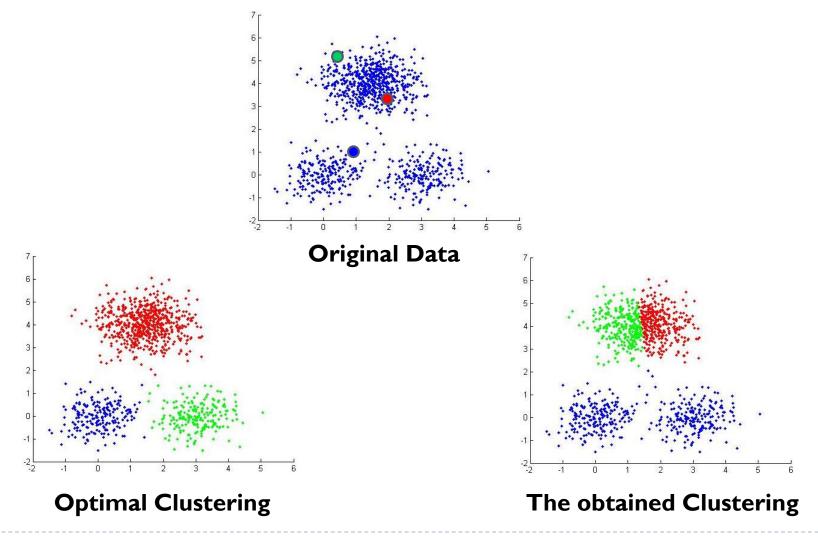
Local optimum

- It always converges
- but it may converge at a local optimum that is different from the global optimum
 - > may be arbitrarily worse in terms of the objective score.



Local optimum: every point is assigned to its nearest center and every center is the mean value of its points.

K-means: Local Minimum Problem



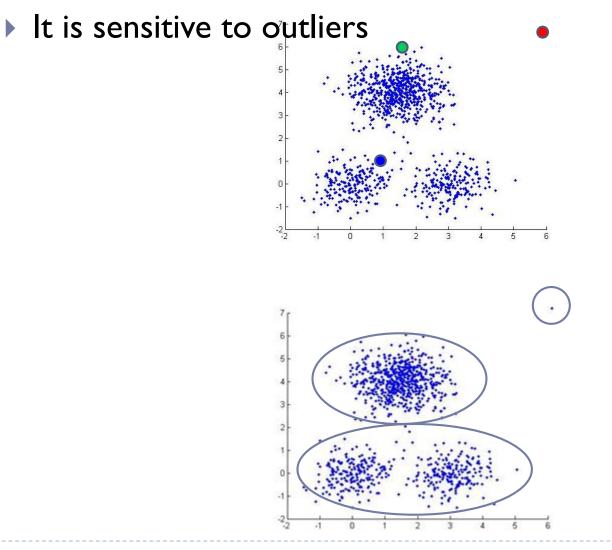
The Lloyd's method: Initialization

- Initialization is crucial (how fast it converges, quality of clustering)
 - Random centers from the data points
 - Multiple runs and select the best ones
 - Initialize with the results of another method
 - Select good initial centers using a heuristic
 - Furthest traversal
 - K-means ++ (works well and has provable guarantees)

Another Initialization Idea: Furthest Point Heuristic

- Choose c_1 arbitrarily (or at random).
- For j = 2, ..., K
 - Select c_j among datapoints $x^{(1)}, \ldots, x^{(N)}$ that is farthest from previously chosen c_1, \ldots, c_{j-1}

Another Initialization Idea: Furthest Point Heuristic



K-means++ Initialization: D2 sampling [AV07]

- Combine random initialization and furthest point initialization ideas
- Let the probability of selection of the point be proportional to the distance between this point and its nearest center.
 - probability of selecting of x is proportional to $D^2(x) = \min_{k < j} ||x c_k||^2$.

• Choose c_1 arbitrarily (or at random).

• For
$$j = 2, ..., K$$

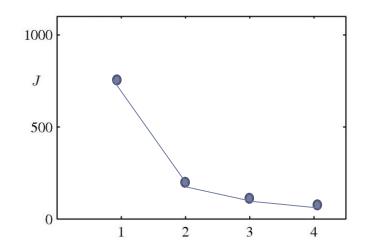
- Select c_j among data points $x^{(1)}, ..., x^{(N)}$ according to the distribution: $\Pr(c_j = x^{(i)}) \propto \min_{k < j} ||x^{(i)} - c_k||^2$
- **Theorem:** K-means++ always attains an $O(\log k)$ approximation to optimal k-means solution in expectation.

How Many Clusters?

- Number of clusters k is given in advance in the k-means algorithm
 - However, finding the "right" number of clusters is a part of the problem
- Tradeoff between having better focus within each cluster and having too many clusters
- Hold-out validation/cross-validation on auxiliary task (e.g., supervised learning task).
- Optimization problem: penalize having lots of clusters
 - some criteria can be used to automatically estimate k
 - Penalize the number of bits you need to describe the extra parameter

 $J'(\mathcal{C}) = J(\mathcal{C}) + |\mathcal{C}| \times \log N$

How Many Clusters?



- Heuristic: Find large gap between k 1-means cost and kmeans cost.
 - "knee finding" or "elbow finding".

K-means: Advantages and disadvantages

Strength

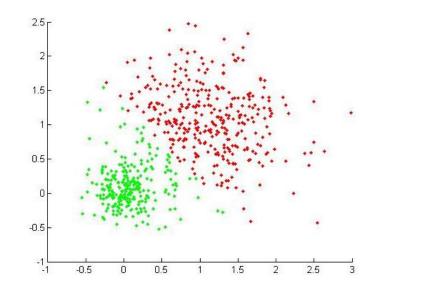
- It is a simple method
- Relatively efficient: O(tKNd), where t is the number of iterations.
 - Usually $t \ll n$.
 - K-means typically converges quickly

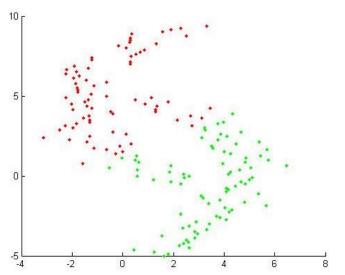
Weakness

- Need to specify *K*, the *number* of clusters, in advance
- Often terminates at a local optimum.
- Not suitable to discover clusters with arbitrary shapes
- Works for numerical data. What about categorical data?
- Noise and outliers can be considerable trouble to K-means

k-means Algorithm: Limitation

- In general, k-means is unable to find clusters of arbitrary shapes, sizes, and densities
 - Except to very distant clusters

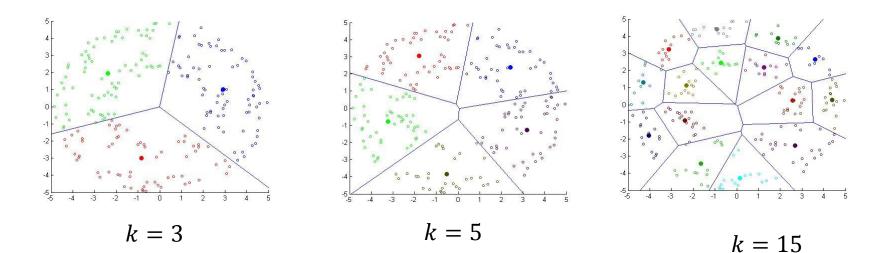




K-means: Vector Quantization

Data Compression

- Vector quantization: construct a codebook using k-means
 - cluster means as prototypes representing examples assigned to clusters.



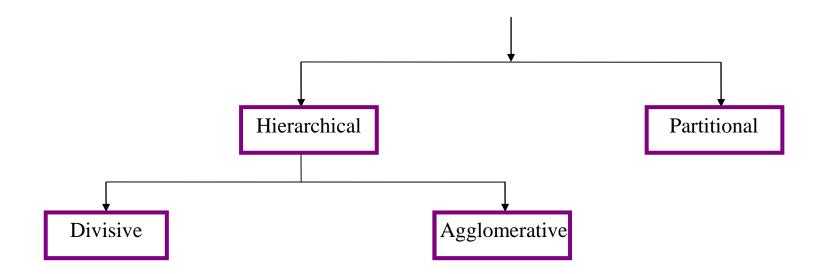
K-means

- K-means was proposed near 60 years ago
 - thousands of clustering algorithms have been published since then
 - However, K-means is still widely used.
- This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering.

Hierarchical Clustering

- Notion of a cluster can be ambiguous?
- How many clusters?
- Hierarchical Clustering: Clusters contain sub-clusters and subclusters themselves can have sub-sub-clusters, and so on
 - Several levels of details in clustering
- A hierarchy might be more natural.
 - Different levels of granularity

Categorization of Clustering Algorithms



Hierarchical Clustering

• <u>Agglomerative</u> (bottom up):

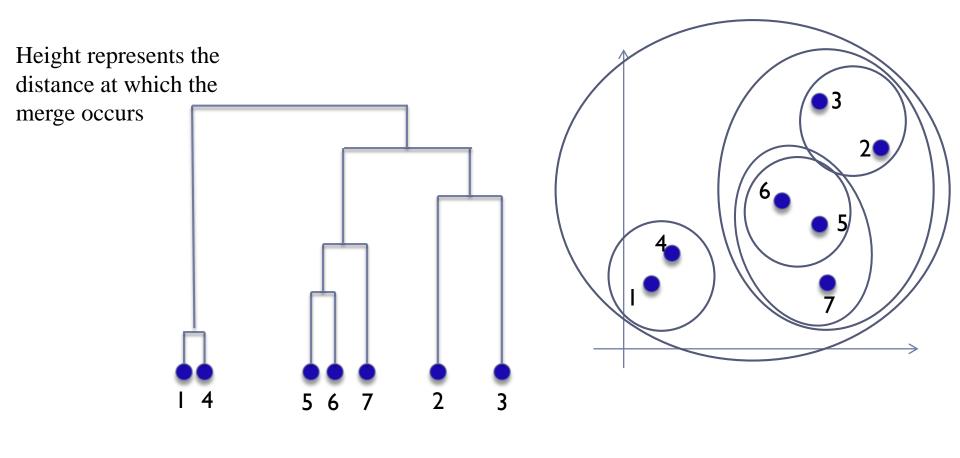
- > Starts with each data in a separate cluster
- Repeatedly joins the closest pair of clusters, until there is only one cluster (or other stopping criteria).

Divisive (top down):

- Starts with the whole data as a cluster
- Repeatedly divide data in one of the clusters until there is only one data in each cluster (or other stopping criteria).

Example

Hierarchical Agglomerative Clustering (HAC)



Distances between Cluster Pairs

Many variants to defining distances between pair of clusters

Single-link

• Minimum distance between different pairs of data

Complete-link

Maximum distance between different pairs of data

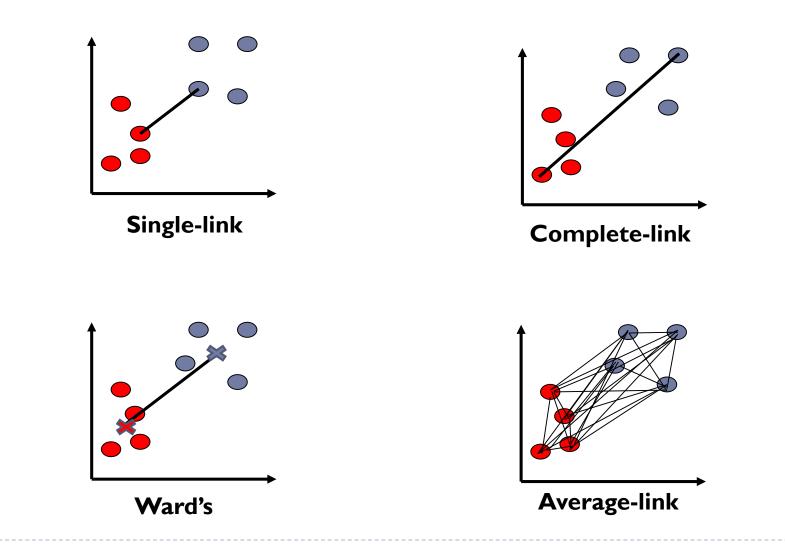
Centroid

Distance between centroids (centers of gravity)

Average-link

Average distance between pairs of elements

Distances between Cluster Pairs



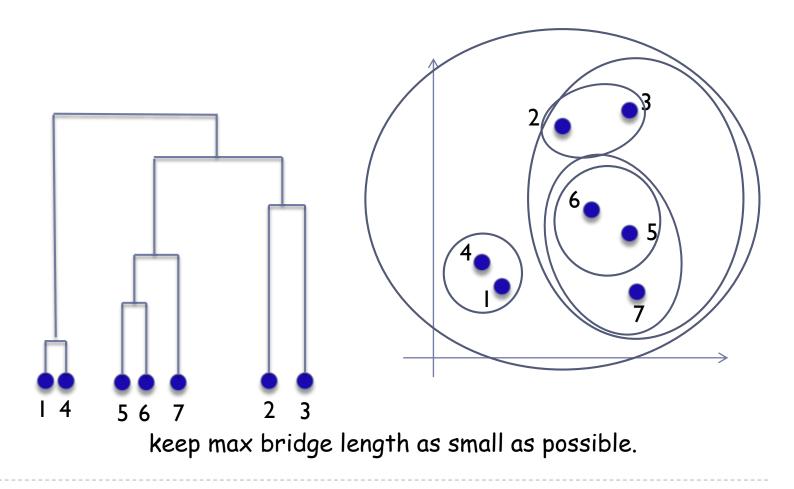
Single Linkage

The minimum of all pairwise distances between points in the two clusters:

$$dist_{SL}(\mathcal{C}_i, \mathcal{C}_j) = \min_{\boldsymbol{x} \in \mathcal{C}_i, \, \boldsymbol{x}' \in \mathcal{C}_j} dist(\boldsymbol{x}, \boldsymbol{x}')$$

• "straggly" (long and thin) clusters due to chaining effect.

Single-Link



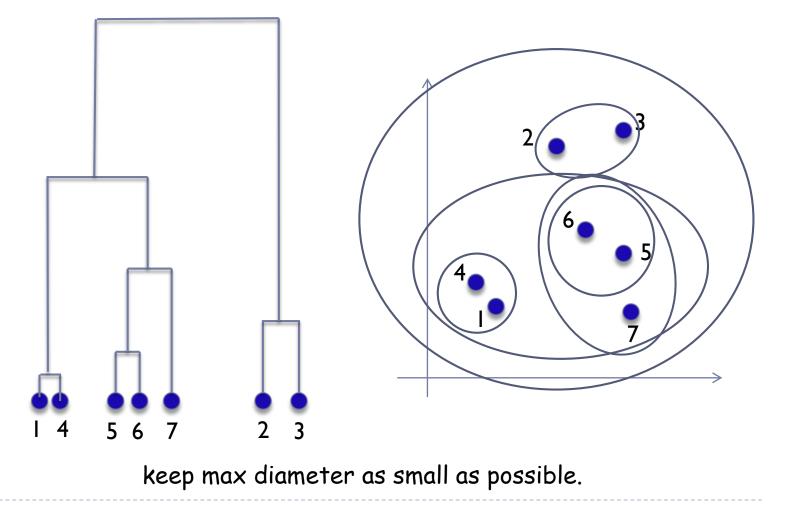
Complete Linkage

The maximum of all pairwise distances between points in the two clusters:

$$dist_{CL}(\mathcal{C}_i, \mathcal{C}_j) = \max_{\boldsymbol{x} \in \mathcal{C}_i, \, \boldsymbol{x}' \in \mathcal{C}_j} dist(\boldsymbol{x}, \boldsymbol{x}')$$

Makes "tighter," spherical clusters typically preferable.

Complete Link



Ward's method

The distances between centers of the two clusters (weighted to consider sizes of clusters too):

$$dist_{Ward}(\mathcal{C}_i, \mathcal{C}_j) = \frac{|\mathcal{C}_i| |\mathcal{C}_j|}{|\mathcal{C}_i| + |\mathcal{C}_j|} dist(\mathbf{c}_i, \mathbf{c}_j)$$

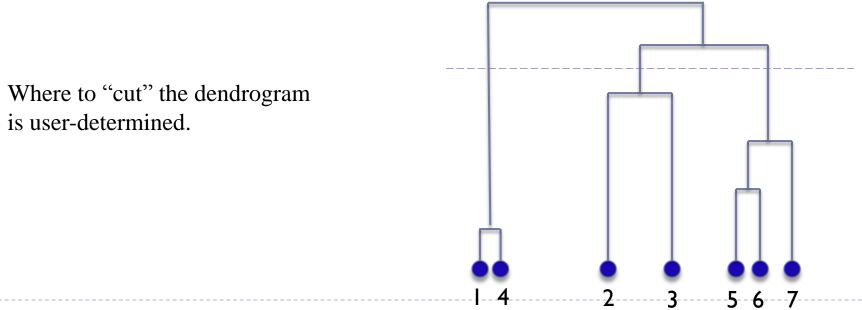
- Merge the two clusters such that the increase in k-means cost is as small as possible.
- Works well in practice.

Computational Complexity

- In the first iteration, all HAC methods compute similarity of all pairs of N individual instances which is $O(N^2)$ similarity computation.
- In each N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- if done naively $O(N^3)$ but if done more cleverly $O(N^2 \log N)$

Dendrogram: Hierarchical Clustering

- Clustering obtained by cutting the dendrogram at a desired level
 - Cut at a pre-specified level of similarity
 - where the gap between two successive combination similarities is largest
 - select the cutting point that produces K clusters



K-means vs. Hierarchical

Time cost:

- K-means is usually fast while hierarchical methods do not scale well
- Human intuition
 - Hierarchical structure maps nicely onto human intuition for some domains and provides more natural output
- Local minimum problem
 - It is very common for k-means
 - However, hierarchical methods like any heuristic search algorithms also suffer from local optima problem.
 - Since they can never undo what was done previously
- Choosing of the number of clusters
 - There is no need to specify the number of clusters in advance for hierarchical methods