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Abstract. Many recent advances in MAC protocols for wireless sensor
networks have been proposed to reduce idle listening, which is costly
in terms of energy. New protocols set the burden on the sending node,
requiring transmission of long preambles or repeated advertisements for
upcoming packets, thereby allowing the sender’s neighbors to turn off
their radios for longer periods of time. As these “Low-Power-Listening

MAC protocols” impose a significant drain on the transmitting node,
the schedule used for probing as well as the particular probing technique
should be well matched to the current network conditions. Our results
show that using such network-aware adaptation of the MAC schedule
provides up to 30% increase in lifetime for different traffic scenarios com-
pared with using fixed schedules, at no additional overhead.

1 Introduction

Applications for wireless sensor networks are becoming increasingly complex,
and they require the network to maintain a satisfactory level of operation for
extended periods of time. Consequently, sensor networks have to make the best
possible use of their initial energy resources. Both protocol-specific and cross-
layer schemes have offered a plethora of energy reducing techniques. In par-
ticular, there are several protocols that focus on reducing energy at the data
link / MAC layer, which constitutes the scope of this work.

As new sensor platforms have appeared on the market, a simple observation
was made that idle listening, far from being negligible, was a major source of
energy consumption [1] [2] [3]. MAC protocol design thus had to be re-thought,
and a new generation of Low-Power-Listening (LPL) MAC protocols were intro-
duced as a result. B-MAC [1] and X-MAC [4], among others, use the principles
behind Aloha with preamble sampling [5]: the sending node occupies the medium
for long intervals of duration ti s to signal its imminent packet transmission. Re-
ceiving nodes are thus allowed to sleep for at most the duration of this preamble
(ti), and they must stay awake when they sense a busy medium until the packet
transfer is complete. In this work, we define “MAC schedule” as the pattern of
packet transmissions occurring within the ti interval.

While a MAC protocol may reduce energy consumption for unicast packets,
it may at the same time waste energy when applied to broadcast packets. Such



2

inefficiencies become significant as broadcast packets make up a larger percentage
of the total packets sent on a network—for example, in the case of a room
monitoring application at night when no events are reported and only protocol
administration packets are exchanged. Until now, protocol designers have only
adapted their unicast MAC schedules to function in a broadcast configuration
without concern for other design considerations. Instead, we propose adopting
the transmission schedule that yields the best lifetime taken from a pool of
compatible protocols.

Furthermore, changes in the physical radio have prompted researchers to
develop new MAC protocols: B-MAC can no longer be implemented on the new
IEEE 802.15.4 compliant platforms because these radios require a fixed preamble
and packet footers and headers. In this paper, we assume that the target radio is a
ChipCon CC2420 [6] 802.15.4 radio, and we make design decisions accordingly—
B-MAC is thus not part of the pool of compatible protocols.

The contributions of this paper are threefold:

– We propose switching MAC schedules from a pool of MAC protocols at the
transmitter to minimize energy consumption based on parameters such as
packet size, whether the packet is broadcast or unicast, and the estimated
ratio of transmit to receive packets in the local neighborhood. The protocols
are “compatible”: the receiver does not need to know what specific schedule is
being used, as it always wakes up every ti s to sense the medium, regardless
of which schedule is selected by the transmitter. As a consequence, this
protocol called MiX-MAC, requires no overhead, and our implementation of
this approach shows that lifetime gains can reach up to 30%.

– Because we utilize existing MAC protocols for our pool, we provide a de-
tailed study of two LPL MAC protocols, X-MAC and SpeckMAC-D, in a
head-to-head comparison, showing the advantages and disadvantages of each
approach for both unicast and broadcast packets. We also introduce MX-
MAC, a modified version of X-MAC that proves efficient for both broadcast
and unicast transmissions.

– Finally, we help build intuition to gauge which assumptions about the MAC
are valid by comparing our analytical model with an implementation of the
various MAC protocols on the Tmote Sky motes.

This paper continues with a discussion of related work in Section 2. Section 3
then introduces MiX-MAC, the main concept of this work. Section 4 provides
simulation results for both broadcast and unicast schedules for the X-MAC and
SpeckMAC-D family of protocols. These results help us define the MAC sched-
ules most adapted to specific conditions in the network. Section 5 provides de-
tails of our implementation of these MAC protocols on the Tmote Sky motes,
as well as results from experiments with this implementation. Finally, Section 6
concludes this work.
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2 Related Work

Following Aloha with Preamble Sampling [5], El-Hoiydi et al. introduced WiseMAC [7],
a MAC protocol that reduces the preamble length before sending a data packet
by exchanging wake-up schedules between neighbors. However, WiseMAC (like
B-MAC) cannot be implemented on 802.15.4 radios. It also requires fine time
synchronization between nodes, and at a cost that may be difficult to quan-
tify. For these reasons, it was not included as such in our study. Moreover, other
work [8] shows that implicit synchronization can be achieved between nodes run-
ning some of the protocols studied here, reducing the need for synchronization
overhead.

B-MAC [1] with LPL was the first MAC protocol to introduce LPL schedules
for recent radios. Polastre et al. provide a model for LPL with strong consid-
eration for the target radio. The authors thoroughly compare B-MAC to S-
MAC [2] and T-MAC [3]. To curb limitations imposed on the receiving node to
stay awake for the time of the preamble, Polastre et al. propose sending pack-
ets with half-sized preambles. Post-B-MAC protocols include X-MAC [4] and
SpeckMAC-D [9]. Both protocols are of the channel-probing family and tried
to improve the LPL scheme presented by B-MAC. Further explanation of these
protocols is provided in Section 3. Although more recent, C-MAC [10] uses the
same schedule as X-MAC and is therefore included in our work under the same
principles that govern X-MAC.

In [9], Wong and Arvind also propose SpeckMAC-B, which is compared,
along with SpeckMAC-D, to B-MAC. The SpeckMAC protocol family is in-
tended for miniature motes called specks. SpeckMAC-B stands for Back off and
replaces the long preamble with a sequence of wake up packets containing the
destination target and the time when the data packet will be sent. This allows
receiving nodes to sleep for the remainder of ti and activate just in time for data
reception. However, this scheduling supposes fine time synchronization between
nodes, which we do not assume in this work. Wong and Arvind develop a model
for SpeckMAC protocols and study their impact on the ProSpeckz platform (a
larger speck of size one square inch), while comparing them to B-MAC.

In this paper, we build on this past body of work, utilizing the idea of adapt-
ing to current network conditions and specifically focusing on adapting LPL

MAC protocols, which have proven quite energy-efficient for low data-rate wire-
less sensor network applications.

3 MiX-MAC: A Highly Adaptable MAC Protocol

3.1 Principles of MiX-MAC

No protocol in the LPL family outperforms the others over all potential condi-
tions in the network. Selecting a MAC protocol supposes a compromise between
excellent performance under certain circumstances (hoped to be the common
case), and suboptimal operation otherwise. Various protocols may perform dif-
ferently according to the broadcast / unicast nature of the packets, the size of
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the frames, or whether a node is mostly receiving or sending packets. Adapting
the MAC schedule allows optimal performance across those parameters.

We propose creating a pool of MAC schedules that are compatible with one
another: while the sender may decide which schedule to follow based on the
parameters mentioned above, the receiver need not be informed of the changes
in MAC schedules. For instance, a sender choosing a certain MAC schedule
may expect an ACK frame between packet transmissions; it will thus stay in
receiving mode for a given time before it returns to transmitting mode. At the
other end of the communication, a receiver simply wakes up periodically (every
ti s), and occasionally receives packets. If a received packet is marked with
an acknowledgment request, it immediately sends an ACK frame. Switching
between interchangeable MAC schedules guarantees that gains in energy and
latency are achieved without any overhead save the computation required to
determine the best schedule to use. We call this approach, whereby the MAC
schedule is adapted over time, MiX-MAC.

There are many ways in which schedule adaptation can occur. For example,
the transmitting node could learn about its performance and adapt to perfor-
mance degradation. However, this requires extra overhead and may take too long
to converge to the ideal schedule. Instead, we utilize a small look-up table within
MiX-MAC that the transmitting node uses to determine which schedule is best
suited for the current node, network and application conditions. This solution
proves inexpensive in terms of computation power during runtime. The threshold
values dictating a change in the MiX-MAC schedule can be established before
deployment using simulation and implementation results. As we will show, in-
accuracies in the estimates of current node, network and application conditions
do not have a major impact on the performance of MiX-MAC.

Existing MAC protocols were included as part of the pool of compatible MAC
schedules: X-MAC [4] and SpeckMAC-D [9], which were introduced around the
same time. However, we also add a novel MAC schedule based on a modified
version of X-MAC.

3.2 X-MAC: A Short Preamble MAC Protocol

X-MAC Schedule Under the X-MAC [4] schedule, a sender repeats the trans-
mission of an advertisement packet containing the address of the intended re-
ceiver. Upon hearing the advertisement packet, the receiver replies with an ACK,
which is followed by the transmission of the data packet by the sender. Figure 1
illustrates this process.

In [4], Buettner et al. do not propose implementing X-MAC for broadcast
packets. X-MAC cannot broadcast packets as is, as the flow of advertisement
packets cannot be answered by an ACK packet. A natural extension to X-MAC
is to repeat advertisement packets for ti (the inter-listening time) and then send
the data packet; however, receiving nodes have to wait until the completion of the
advertisement cycle before they can receive the data packet—and go back to sleep
(on average, they must wait for ti

2
+ ttxPacket). In such cases, X-MAC performs
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equally to B-MAC, with the added advantage that it can be implemented using
fixed preambles.

MX-MAC: A Modified X-MAC for Broadcast Transmissions In [4],
Buettner et al. make a convincing case for the energy and latency gains achieved
by their proposed X-MAC protocol. Although efficient for unicast packets, this
simple scheme is not well suited for broadcast transmissions. One additional
drawback to X-MAC is its sensitivity to the hidden node problem and the persis-
tence of a high risk of false positive packet reception acknowledgements. Indeed,
early ACKs are sent and received before the data packet is transmitted, which
does not guarantee successful reception of the packet.

We propose to modify the MAC schedule of X-MAC by repeating the data
packet and waiting for ACK frames between transmissions. A received ACK sig-
nifies that the data packet has been correctly received and stops the transmission
flow of data packets. This renders the MAC protocol immune to false positive
packet receptions.

For broadcast packets, the flow of data packets is still interleaved with periods
of listening for acknowledgments. Consequently, multiple receivers of the same
packet may wake up, stay in Rx mode until the full reception of a packet, and go
back to sleep. Figure 1 illustrates the timeline for this modified X-MAC protocol,
called MX-MAC.

3.3 SpeckMAC-D: Repeating the Data Packet

Another LPL protocol is SpeckMAC-D [9]. In SpeckMAC-D, if a sender wants to
transmit a packet to a receiver, it performs a clear channel assessment (CCA),
and if successful, starts repeating the packet for at least ti seconds. When a
receiver wakes up, it checks the medium. If busy, it listens until it has received
a full data packet or until it realizes that it is not the intended destination for
the packet. Figure 1 illustrates the transmission schedule for SpeckMAC-D.

Although not specified by Wong and Arvind in [9], we can imagine that
ACKs be manually sent. If the sender is requesting an ACK, it needs to number
the repeated data packets in a way that the receiver knows when to wake up
and send an ACK after the sender is done transmitting. However, this small
change adds two additional bytes of overhead in each packet in the absence
of time synchronization; we consider that for ti ranging from 0 to 1s, 2 bytes
are necessary to number packets (it is not uncommon to schedule more than
256 packet repeats for the smallest packet size and thus 1 byte would not be
sufficient). This number has to be updated every time a packet repeat is sent
out, forcing the MAC protocol to reload the TxFIFO buffer before switching to
Tx mode. Figure 1 illustrates the transmission schedule for this protocol, labeled
SpeckMAC-D-ACK.
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Fig. 1. X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-ACK protocol timelines
for unicast packets. ti is the channel check interval.

3.4 Calculation of MiX-MAC Switching Thresholds

The X-MAC, MX-MAC or SpeckMAC-D schedules perform differently depend-
ing on the network scenario and application requirements. MiX-MAC attempts
to pick the MAC schedule that yields the best operating points by adapting the
MAC schedule, based on a look-up table. Thus, we must populate this adapta-
tion table and find the appropriate switching thresholds. As discussed next, we
begin this evaluation with the simulation of an analytical model based on the
CC2420 radio data sheet, and verify it with a TinyOS implementation.

4 Determining Optimal Schedules for MiX-MAC

Adaptation

This section provides a direct comparison of the LPL MAC protocols X-MAC,
MX-MAC, SpeckMAC-D and SpeckMAC-D-ACK for both broadcast and uni-
cast packets and for different ratios of transmit to receive and different packet
sizes, in order to determine which MAC schedule performs best under different
conditions in order to populate a simple look-up table within MiX-MAC for
schedule adaptation.

Using the CC2420 data sheet, we modeled the energy dissipation for deter-
mined scenarios and simulated the corresponding lifetime of a node following
each MAC schedule. This analytical model can be seen as an “ideal” representa-
tion of the radio, when not burdened by an operating system. Using this model
provides insights into the inner qualities and drawbacks of the various MAC
protocols. Section 5 provides a discussion of the implementation of these MAC
protocols for TinyOS platforms.
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Fig. 2. Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-ACK
with a fixed n and a rate r = 1/300 pkt.s−1. All packets sent are broadcast (a) or
unicast (b).

4.1 Performance Comparison

We begin by comparing X-MAC, MX-MAC, SpeckMAC-D and SpecMac-D-ACK
for a scenario similar to the one described in [1]. One node receives packets at
a rate r pkt.s−1 from n neighbors. This node sends m packets at rate r to one
(unicast) or all (broadcast) neighboring nodes. Unless otherwise specified, m is
equal to 1. The lifetime is calculated assuming two AA batteries and the highest
transmit power setting (0dBm). Note that the size of the X-MAC advertisement
packet is set to 11 bytes, which includes 5 bytes of preamble and 6 additional
bytes for headers and footers as standardized by the CC2420 radio.

Broadcast packets In this scenario, all packets are broadcast. Figure 2(a)
shows the lifetime given fixed ti and n for X-MAC, MX-MAC, SpeckMAC-D
and SpeckMAC-D-ACK. As is to be expected, SpeckMAC-D performs better
than SpeckMAC-D-ACK at all times and for all cases since the latter adds
bytes of overhead to the transmission. MX-MAC and X-MAC both exhibit more
modest lifetimes than SpeckMAC-D. X-MAC suffers from the problem exposed
in Section 3.2: as ti increases, so do the receive times at the nodes because
in broadcast mode, the stream of advertisements cannot be interrupted. MX-
MAC does not suffer from the same problem, but it still has a shorter lifetime
than SpeckMAC-D, as MX-MAC forces the sending node to spend more time
in Rx mode than the latter and Rx mode is more energy costly than Tx mode
for CC2420 radios. The “optimal” ti is approximately 400ms and 150ms for
SpeckMAC-D / MX-MAC and X-MAC, respectively.

Unicast packets In this scenario, all packets are unicast. Figure 2(b) shows
the lifetime given fixed ti and n for X-MAC, MX-MAC, SpeckMAC-D and



8

SpeckMAC-D-ACK. X-MAC and MX-MAC perform similarly, although the re-
sults show clearly the impact of packet size. In unicast scenarios, MX-MAC can
be considered to be X-MAC with longer packets. When a receiving node running
MX-MAC wakes up at a time when it misses the beginning of a new packet, it
must stay in Rx mode longer than those running X-MAC. For both, the “opti-
mal” ti is in the interval [500ms, 750ms]. As m is 1, the main task for the studied
node is to receive, causing the optimal ti to be larger than in m ≈ n scenarios.
Longer ti values favor receiving nodes since a packet is almost always available
(in both X-MAC and SpeckMAC-D) when they wake up. On the other hand, a
longer ti has the opposite effect in sending nodes since more packet repeats have
to be sent (for a fixed packet size).

SpeckMAC-D gives a completely different picture of the evolution of its life-
time as a function of ti. Most surprisingly, SpeckMAC-D, in spite of repeating
data packets for at least ti seconds without interruption, brings a lifetime com-
parable to the X-MAC protocols. However, this is achieved for smaller values of
ti such that a sending node would spend much less time in Tx mode. Two ob-
servations should be made: the optimal value of ti is a narrow “sweet spot” and
SpeckMAC-D without ACKs puts the burden of acknowledgment on upper lay-
ers (not included here). SpeckMAC-D-ACK follows the same pattern, although
its lifetime is reduced by increased size and time overhead.

Ratio of transmissions vs. receptions (m ≈ n) As explained in the previ-
ous section, a node’s ratio of transmissions to receptions may shift the optimal
value for ti by a considerable amount. Figure 3(a) shows the changes in node life-
time when the node sends approximately as many unicast packets as it receives
(the unlikely scenario where the node forwards all received broadcast packets is
not shown).

X-MAC and MX-MAC still perform equally well, although a small difference
can be perceived: the cross-over observed above no longer happens because nodes
running X-MAC send many more packets, which, due to the X-MAC schedule,
sets the radio in Rx mode for longer periods of time than for MX-MAC. Since
advertisement packets are shorter than data packets, X-MAC spends more time
switching modes and listening to the medium than MX-MAC. As expected, the
optimal ti value is significantly smaller than before.

For m ≈ n, the optimal ti sweet spot is much more narrow. Changes made to
ti by the MAC protocol must be very gradual because the effect of transmitting
a packet vs. that of receiving a packet can be very severe outside of a very narrow
band within which the MAC protocol must operate.

Packet size Figure 3(b) shows interesting results when the packet size is dou-
bled from 40 bytes to 80 bytes and unicast transmissions are used with m = 1.
In this case, X-MAC’s maximum lifetime is equal to that of SpeckMAC-D. As
missing the beginning of a packet transmission requires staying in Rx mode for
longer periods of time, X-MAC does better than MX-MAC.
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Fig. 3. Node’s lifetime for X-MAC, MX-MAC, SpeckMAC-D and SpeckMAC-D-ACK
with a fixed n when all packets sent are unicast. Packets are of size 40B and m = n+1
(a) or 80B and m = 1 (b).

For large packets, choosing X-MAC over MX-MAC can increase the lifetime
of individual nodes by up to 30%. It could also be the motivating factor to
abandon SpeckMAC-D for X-MAC, which is also less prone to contention. Con-
sequently, packet size is a relevant parameter in choosing the best schedule for
a packet transmission—and is free information.

4.2 MiX-MAC Adapts the MAC Schedule to Network Conditions

Picking the right MAC schedule The previous section shows that all MAC
protocols sacrifice performance in unicast mode to that of the broadcast mode
or vice-versa. MiX-MAC performs well against every combination of parameters.

MiX-MAC adopts SpeckMAC-D’s schedule for broadcast packets, and for
unicast packets, it uses four axes to decide the appropriate schedule. These
include ti value, packet size, estimated ratio of transmitted vs. received packets,
and the ACK requirements determined by the upper level protocols or services.

Resulting lifetime increase Figure 4 presents a comparison of the lifetimes for
MiX-MAC, X-MAC and SpeckMAC-D for a packet size of 40 bytes, 20% of the
total traffic being broadcast packets (all other packets are unicast) (Figure 4(a))
and all unicast packets (Figure 4(b)). The rate r is 1

10
packets per second.

These results show that MiX-MAC achieves the upper bound of node lifetime
by selecting the best schedule for various scenarios. X-MAC suffers greatly in
broadcast mode, even for relatively small proportions of broadcast packets (20%).
MiX-MAC helps the MAC protocol obtain the best of all worlds: lifetime gains
are obtained over other protocols on a full range of ti values. This last point is
important because in a network where the rate of packet transmissions varies,
the optimal value of ti would naturally vary as was seen previously.
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Fig. 4. Node lifetime as a function of ti for MiX-MAC, X-MAC, MX-MAC and
SpeckMAC-D. The packets are 20% broadcast / 80% unicast (a) and all unicast (b),
sent at a rate r = 1

10
pkt.s−1.

5 Implementation in TinyOS

5.1 Reconstruction Model

We chose to accurately evaluate the lifetime of a mote by measuring the energy
consumed under various basic operations using a fast data acquisition board.
We measured the energy and time spent probing the medium, starting a trans-
mission, sending one frame and switching the radio back to TX mode, stoping a
transmission after a successful and failed (only for X-MAC and MX-MAC sched-
ules) transmission, and receiving a packet. Each scenario is then reconstructed
by adding the energy expended during each operation.

Our measurements show that it takes a little under 32 µs to send one byte
(we measured 31.89 µs exactly), which is confirmed by the CC2420 datasheet.
Moreover, our measurements allow us to determine the turn around time for
each protocol. For SpeckMAC based schedules, the time to revert to TX mode
is 772 µs, and it is 1.351 ms for MX-MAC and X-MAC based protocols—as
they have to listen for ACK frames between packets. These latter values depend
heavily on the TinyOS code and may differ from one programmer to the next.

In order to verify the accuracy of our reconstruction technique for deter-
mining node lifetime, we ran several scenarios where we directly measured node
lifetime. Based on these experiments, the error of our reconstruction model does
not exceed 3%. We have observed that most of the error emanates from the
estimation of the idle power, which tends to vary over time due to temperature
changes in the acquisition circuit.
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5.2 Protocol Design Choices

We tried to optimize as many aspects of the MAC schedule as possible: the time
separating two clear channel assessments (CCA) as well as the number of CCAs
when sensing the medium, the number of CCAs before a packet transmission,
the behavior of a node when detecting a collision, etc. Since our goal is only
to compare MAC protocols without bias toward one schedule, we endeavored to
optimize the behavior of all three MAC protocols. Because all MAC schedules
are meant to be compatible, they were implemented by the same TinyOS code.
Consequently, all three protocols have the same essential parameters such as the
number of CCAs and the time separation between them.

Time Separation Between CCAs Two CCAs are usually sufficient to de-
tect an ongoing transmission, provided they are separated by the correct time.
Turn around times established in the previous section as well as trial and error
experiments helped set the smallest acceptable time separation between CCAs
(t2CCAs). During our experiments, we strove to minimize the time separating two
CCAs in order to not expend energy, as simulations have shown that medium
probes account for most of the energy consumption for low traffic patterns and
short ti values. We also noticed that for a value of 900 µs between CCAs, the
delivery reliability of the MAC did not always increase for smaller packets. The
reason is that the second CCA would “overshoot” the packet transmission and
not bring any advantage.

Figure 5(a) shows the packet delivery ratios for two nodes randomly sending
100 packets to each other, including collisions, missed packets, bad radio states,
etc. As the packet size increases, it is generally easier for a receiver to hear a
transmission. The dotted line shows a value for t2CCAs that was not retained
because of poor reliability.

We found that an acceptable value for t2CCAs is between 320 µs and 512 µs

for SpeckMAC, and 512 µs for MX-MAC and X-MAC, which represent the best
compromise between energy use in very low traffic networks and fairness to all
protocols. For MiX-MAC, which must use compatible parameters for all MAC
schedules, we set t2CCAs to 512 µs for all protocols.

For packet sizes close to their maximum value (128B), we found the radio to
“jam” under SpeckMAC: the radio would issue RXFIFO overflows because the
FIFO was filled before it could be read, and hence the packet delivery ratios in
this case dropped significantly.

The X-MAC Design and Choice of Advertisement Packet Size As
figure 5(a) shows, the packet delivery ratio for 11B (no payload) packets is
only 65% for X-MAC. This prompted the choice of larger advertisement packets
(40B), as is supposed by C-MAC [10]. In order to remain compatible with the
other protocols, we considered all 40B long packets to be advertisements. The
receiver, upon reading a 40B packet from its RXFIFO stays on to receive the
subsequent data packet. In other words, when a MAC protocol needs to send a
40B packet, it has to use the X-MAC schedule.
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Fig. 5. (a) Comparison of the packet delivery ratio of the MAC schedules as a function
of packet size and time between CCAs. (b) Throughput for ti values of 1s.

MAC Schedule Compatibility Through design choices, we allowed the three
MAC protocols to be compatible. The same TinyOS code can let a mote send
and receive packets using the MX-MAC, X-MAC or SpeckMAC schedules.

More importantly, the basic principle behind schedule compatibility is that a
receiver does not need to know the ongoing schedule, and simply ACKs packets
that request it. For MX-MAC and X-MAC, the acknowledgment request field
must be set to one. If no ACK is requested, the receiver simply turns off after
the packet has been received.

5.3 Determination of the Switching Thresholds

In order to populate the MiX-MAC look-up table, we must compare the X-MAC,
MX-MAC and SpeckMAC-D schedules and determine which is most appropriate
to the current set of parameters on the network.

Reliable Throughput or Goodput In order to evaluate the throughput of
the MAC protocols, we let one node send 100 packets to three different neigh-
bors. For MX-MAC and X-MAC, a failed packet transmission was followed by
two subsequent attempts to send after 200ms. SpeckMAC does not provide any
retransmission mechanism.

Figure 5(b) shows the number of correct bits transmitted in one second.
For smaller values of ti (not shown), X-MAC has the highest throughput. With
larger values of ti and for larger than 20B packets, MX-MAC performs best.
This is because MX-MAC is capable of staggering packet transmissions, which
compensates for retransmissions. As the packet size increases, fewer retransmis-
sions occur, which increases the throughput by up to 50%. When ti is too small,
MX-MAC cannot fit more transmissions.
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Fig. 6. Comparison of the MX-MAC, X-MAC and SpeckMAC schedules for unicast
packets for scenarios where the node is mostly sending. Packets are 15B (a) or 40B (b).

Since X-MAC uses fixed sized advertisement packets, its throughput increases
linearly with the data packet size as shown by the figure. For a different reason,
SpeckMAC based schedules are also linear: SpeckMAC can send only one packet
per ti period. When the packet size increases, so does the throughput.

These results teach us that MiX-MAC can select the MAC schedule that
will yield the best goodput for a certain packet size and ti value. The results
in Figure 5(b) suggest that for ti = 1 s, the X-MAC schedule yields the best
throughput for small packets (less than 40B), while the MX-MAC schedule has
the best performance for larger packets.

Lifetime for Unicast Packets Figure 6(a) shows the lifetimes for MX-MAC,
X-MAC, and SpeckMAC schedules for various {n; m} values and 15B unicast
packets—n now designates the rate of received packets instead of the number of
neighbors as we only have a limited number of Tmotes, and m now designates
the rate of transmitted packets. As per the simulations, SpeckMAC does not
perform as well as MX-MAC and X-MAC. While this validates the simulations,
Figure 6(a) shows that X-MAC performs best for smaller packets as opposed
to previously shown. This holds only when the node is mostly sending. This is
because the advertisement packet size went from 11B to 40B which increases the
chance of being heard during a transmission, and thus prevents retransmissions.
At the same time, an increase in packet size increases the energy consumption
by only 3-4%. This is because the radio transmits for ti s, whatever the packet
size.

The advantages of X-MAC are reduced further when the data packet size
reaches that of the advertisement size because the advertisement packet is no
longer easier to hear than the data packet.
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Fig. 7. (a) Comparison of the MX-MAC, X-MAC and SpeckMAC schedules for 40B
broadcast packets when the node is mostly receiving. (b) A simple mapping function
lets the protocol switch between schedules in order to increase the lifetime.

This section shows that for packets smaller than 40B, and for cases when the
node is mostly sending, X-MAC allows the node to increase its lifetime. In other
cases, MX-MAC leads to a longer lifetime. If the main concern of the network
application is lifetime, MiX-MAC can thus switch between X-MAC and MX-
MAC schedules under the conditions of Figure 6. This is possible because while
the receiver does not get to pick the MAC schedule, the sender can select the
appropriate MAC given current network and neighbor conditions. The receiver
does not need to be informed of any changes in MAC scheduling. Based on the
packets received, the receiver knows which schedule the transmitter is following.

Lifetime for Broadcast Packets Contrary to unicast packets, one MAC
schedule consistently spares the energy of the node, over the range of packet
sizes. Figure 7(a) shows that X-MAC performs very poorly, as shown by the
simulations as well (Section 4.1). Moreover, the lifetime increase provided by
SpeckMAC is modest (2%) when the node is mostly sending (not shown here),
and larger (10%) when the node is mostly receiving.

These relatively small lifetime increases hide the fact that with the Speck-
MAC schedule, the destination nodes are much more likely to correctly receive
the packets (Section 5.2). Thus, using the SpeckMAC schedule for broadcast
allows for longer lifetime and more reliable communication.

The results for the broadcast case show that MiX-MAC should always select
the SpeckMAC-D schedule: as it will enjoy small gains in lifetime, it will greatly
improve packet delivery reliability compared to MX-MAC and X-MAC.
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5.4 MiX-MAC Achieves the Upper Bound of Node Lifetime

Implementation example In this section, we present the node lifetime as
a function of packet size in Figure 7(b) as an easy-to-read graph of schedule
switching benefits. The figure shows a lifetime increase of up to 30% compared
to fixed schedules. While the mapping may not be perfect, the error of the point
at which schedules are switched stems from the fact that schedules have very
similar energy patterns at these packet sizes. The error in schedule switching is
thus inherently small.

As can be seen in the figure, depending on the values of {m; n}, the lifetime
may actually increase with the size of the packets sent. This is because a sending
node is on for a fixed amount of time, and more reliable communications help
avoid retransmissions as shown in Section 5.3.

Effects of erroneous estimates resulting in suboptimal scheduling de-
cisions Since MiX-MAC picks schedules from a pool of existing protocols, er-
roneous estimates for the optimal ti would equally affect the performance of
X-MAC, MX-MAC, and SpeckMAC-D.

However, if the lookup table were to point to an incorrect schedule, due for
instance to an outdated or inaccurate estimate of the number of transmissions
over receptions ratio, the network would simply operate at the level of per-
formance of the chosen MAC protocol, without further degradation. For small
estimate errors around the points where schedules are switched (the intersection
in Figure 7(b)), the difference between the energy consumption of the optimal
schedule and that of other schedules is small. A small error around these points
cuts lifetime by only a few percentages as our experiment suggests.

Elsewhere, a small estimate error has no effect: because the error is too small
to impose a different schedule, the sending node picks the same schedule as
the optimum. For very large estimate errors (for which the point of switching
schedules is between the estimate and the actual value of a parameter), the
resulting performance loss may be significant; however, large estimate errors
should be rare by nature.

5.5 Simulation Vs. Implementation Results Comparison

For broadcast packets, our simulations of SpeckMAC-D show a larger lifetime
improvement than in the implementation. The difference originates from the
time it takes TinyOS to revert to Tx mode after a packet transmission: this
results in increased energy consumption. While in the analytical model, the
time to switch to Tx mode has a ratio of 4-to-1 from X-MAC / MX-MAC to
SpeckMAC-D (736 µs to 192 µs), this ratio is only 2-to-1 in TinyOS. The energy
difference is further reduced by longer probes in TinyOS. However, investigation
of packet delivery ratio shows that the SpeckMAC-D schedule is more reliable.

For unicast packets, the main difference between simulation and implemen-
tation results stems from the size of the advertisement packets sent by X-MAC.
Because 11B packets are typically hard to hear for nodes using two CCAs, we
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increased the size of advertisement packets to 40B. This shifted the ranges of
ti values and packet sizes for which X-MAC or MX-MAC allowed for longer
lifetimes. However, in both sets of results, we observe that the optimal ti value
decreases with an increase in packet transmissions.

6 Conclusion and Future Work

Existing MAC protocols employ identical schedules for both unicast and broad-
cast packet transmissions or, when impossible, simply modify their “unicast
schedule” to work with broadcast packets. For instance, IEEE 802.11 cannot
perform an RTS / CTS handshake for broadcast packets, and thus only utilizes
CSMA for broadcast packets, regardless of the impact on lifetime or contention.

In this paper, we propose adapting the MAC schedule to node and network
conditions to improve performance under a wide range of conditions and for
both unicast and broadcast packets. The MAC schedule should be chosen to
maximize the lifetime of the network, which includes reducing contention.

The TinyOS implementation brings both validation as well as some con-
tradictions to the simulation results. While most results show similar relative
performance, they scale differently as the slowness of TinyOS incurs greater
energy consumption. We also demonstrated the feasibility of compatible MAC
schedules in a real implementation with no overhead save the memory required
for the switching table.

Future work includes researching how to best implement MX-MAC and X-
MAC schedules in a lightweight fashion. The number of parameters and metrics
may also be increased; However, this will require an efficient way to disperse
information within the network.
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